# QuantityStudyQNN **Repository Path**: richybai/quantity-study-qnn ## Basic Information - **Project Name**: QuantityStudyQNN - **Description**: The code of the paper Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification, which has been accepted by Quantum Inf Process. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-02-24 - **Last Updated**: 2025-07-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # QuantityStudyQNN The code of the paper [Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification](https://doi.org/10.1007/s11128-023-03929-y), which has been accepted by **Quantum Inf Process**. ## Data preprocessing - encoder.py: use QPIE (Amplitude Encoding) to convert images into tensorflow-quantum-circuit. - convert.sh: conversion script. ## Experiments - binary_classifierCX.py: CX classification code - binary_classifierCRy.py: CRy classification code - traincr.sh: training script for CRy. - traincx.sh: training script for CX. ## Drawing - Drawing using qpic layer-CR, layer-CX, encoder4qubits - Drawing using matplotlib accuracy, expressibility ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{bai2023quantity, title={Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification}, author={Bai, Qi and Hu, Xianliang}, journal={Quantum Information Processing}, volume={22}, number={5}, pages={184}, year={2023}, publisher={Springer} } ```