# ComfyUI-WanVideoWrapper **Repository Path**: rjbian/ComfyUI-WanVideoWrapper ## Basic Information - **Project Name**: ComfyUI-WanVideoWrapper - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-04 - **Last Updated**: 2025-03-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ComfyUI wrapper nodes for [WanVideo](https://github.com/Wan-Video/Wan2.1) # WORK IN PROGRESS # Installation 1. Clone this repo into `custom_nodes` folder. 2. Install dependencies: `pip install -r requirements.txt` or if you use the portable install, run this in ComfyUI_windows_portable -folder: `python_embeded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\requirements.txt` ## Models https://huggingface.co/Kijai/WanVideo_comfy/tree/main Text encoders to `ComfyUI/models/text_encoders` Transformer to `ComfyUI/models/diffusion_models` Vae to `ComfyUI/models/vae` You can also use the native ComfyUI text encoding and clip vision loader with the wrapper instead of the original models: ![image](https://github.com/user-attachments/assets/6a2fd9a5-8163-4c93-b362-92ef34dbd3a4) --- Examples: --- TeaCache (temporary WIP naive version, waiting on the official one) I2V: https://github.com/user-attachments/assets/504a9a50-3337-43d2-97b8-8e1661f29f46 Context window test: 1025 frames using window size of 81 frames, with 16 overlap. With the 1.3B T2V model this used under 5GB VRAM and took 10 minutes to gen on a 5090: https://github.com/user-attachments/assets/89b393af-cf1b-49ae-aa29-23e57f65911e --- This very first test was 512x512x81 ~16GB used with 20/40 blocks offloaded https://github.com/user-attachments/assets/fa6d0a4f-4a4d-4de5-84a4-877cc37b715f Vid2vid example: with 14B T2V model: https://github.com/user-attachments/assets/ef228b8a-a13a-4327-8a1b-1eb343cf00d8 with 1.3B T2V model https://github.com/user-attachments/assets/4f35ba84-da7a-4d5b-97ee-9641296f391e