# fatigue_monitor **Repository Path**: rk3568_awtk/fatigue_monitor ## Basic Information - **Project Name**: fatigue_monitor - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-10 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Fatigue Monitoring System This project is a fatigue monitoring system that utilizes FastAPI for the backend and PyQt5 for the frontend. The system is designed to detect signs of fatigue through image recognition, leveraging a pre-trained model. ## Project Structure ``` fatigue_monitor_system ├── backend │ ├── app.py # Entry point for the FastAPI backend application │ ├── models │ │ └── detector.py # Contains the Detector class for image recognition │ ├── routes │ │ └── api.py # Defines API routes for handling requests │ ├── utils │ │ └── image_processing.py # Utility functions for image processing │ ├── data.yaml # Configuration file for model categories │ ├── requirements.txt # Python dependencies for the backend │ └── README.md # Documentation for the backend ├── frontend │ ├── main.py # Entry point for the PyQt5 frontend application │ ├── ui │ │ └── main_window.py # UI layout definition for the main window │ ├── widgets │ │ ├── camera_widget.py # Widget for displaying camera feed │ │ ├── table_widget.py # Widget for displaying recognition results │ │ └── button_panel.py # Widget for control buttons │ ├── resources │ │ └── icons # Directory for icon resources │ ├── utils │ │ └── api_client.py # Utility functions for API interaction │ └── README.md # Documentation for the frontend └── README.md # Overall project documentation ``` ## Installation 1. Clone the repository: ``` git clone cd fatigue_monitor_system ``` 2. Install backend dependencies: ``` cd backend pip install -r requirements.txt ``` 3. Install frontend dependencies (if any): ``` cd frontend # Add any frontend-specific installation commands here ``` ## Usage 1. Start the backend server: ``` cd backend uvicorn app:app --reload ``` 2. Run the frontend application: ``` cd frontend python main.py ``` 3. Use the application to open images or the camera, start recognition, and view results. ## Features - Image and camera input for fatigue detection - Real-time recognition with confidence scores - Historical results display with image snapshots ## License This project is licensed under the MIT License. See the LICENSE file for details.