# 机器学习汇总 **Repository Path**: rottengeek/machine_learning_summary ## Basic Information - **Project Name**: 机器学习汇总 - **Description**: 机器学习算法实战汇总 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 11 - **Forks**: 6 - **Created**: 2019-11-07 - **Last Updated**: 2025-05-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 机器学习汇总 #### 介绍 本模块包含自己学习机器学习过程中学习过的内容,包含基础案例和实战案例,大部分以ipynb的格式展示,包含数据集和源代码,可以下载使用练习,包含机器学习的常见算法,如逻辑斯蒂回归,决策树,支持向量机,集成算法,贝叶斯,聚类等等。 由于包含数据集内容比较大,鉴于网速没有上传到github,而且码云自带ipynb文件渲染,可以在线看代码,由于码云自带的图片无法渲染,有些内容是通过jupyter官网的nbviewer渲染的,下面是该项目的链接。 [项目码云链接](https://gitee.com/rottengeek/machine_learning_summary/tree/master) #### 目录 - 0-数据预处理 - [数值特征处理](https://gitee.com/rottengeek/machine_learning_summary/blob/master/0-数据预处理/特征标准化.ipynb) - [离散特征处理](https://gitee.com/rottengeek/machine_learning_summary/blob/master/0-数据预处理/离散特征处理.ipynb) - [1-K近邻算法](https://gitee.com/rottengeek/machine_learning_summary/blob/master/0-数据预处理/离散特征处理.ipynb) - [2-梯度下降求解逻辑斯蒂回归](https://gitee.com/rottengeek/machine_learning_summary/blob/master/2-梯度下降/梯度下降求解逻辑回归.ipynb) - [3-逻辑回归-信用卡欺诈检测](https://gitee.com/rottengeek/machine_learning_summary/blob/master/3-逻辑回归-信用卡欺诈检测/信用卡欺诈检测.ipynb) - [4-决策树](https://gitee.com/rottengeek/machine_learning_summary/blob/master/4-决策树/决策树demo.ipynb) - 5-随机森林 - [随机森林](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/5-随机森林/1-随机森林.ipynb) - [数据特征对随机森林的影响](https://gitee.com/rottengeek/machine_learning_summary/blob/master/5-随机森林/2-数据与特征对随机森林的影响.ipynb) - [随机森林参数选择](https://gitee.com/rottengeek/machine_learning_summary/blob/master/5-随机森林/3-随机森林参数选择.ipynb) - 6-特征工程 - [特征预处理](https://gitee.com/rottengeek/machine_learning_summary/blob/master/6-特征工程/特征预处理.ipynb) - [数值特征](https://gitee.com/rottengeek/machine_learning_summary/blob/master/6-特征工程/数值特征.ipynb) - [文本特征](https://gitee.com/rottengeek/machine_learning_summary/blob/master/6-特征工程/文本特征.ipynb) - [图像特征](https://gitee.com/rottengeek/machine_learning_summary/blob/master/6-特征工程/图像特征.ipynb) - [7-集成算法](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/7-集成算法/集成算法.ipynb) - [8-贝叶斯-拼写检查器](https://gitee.com/rottengeek/machine_learning_summary/blob/master/8-贝叶斯-拼写检查器/Untitled.ipynb) - [9-贝叶斯-新闻分类](https://gitee.com/rottengeek/machine_learning_summary/blob/master/9-贝叶斯-新闻分类/news_C.ipynb) - [10-聚类算法实验分析](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/10-聚类算法实验分析/聚类算法-实验/聚类.ipynb) - [11-GMM聚类](https://gitee.com/rottengeek/machine_learning_summary/blob/master/11-GMM聚类/GMM.ipynb) - [12-支持向量机](https://gitee.com/rottengeek/machine_learning_summary/blob/master/12-支持向量机/notebooks/support_vector_machines.ipynb) - 13-降维算法 - [LDA](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/13-降维算法/LDA/LDA.ipynb) - [PCA](https://gitee.com/rottengeek/machine_learning_summary/blob/master/13-降维算法/PCA/PCA.ipynb) - 14-Xgboost - [数据探索](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/14-Xgboost/part1_data_discovery.ipynb) - [建模](https://nbviewer.jupyter.org/urls/gitee.com/rottengeek/machine_learning_summary/raw/master/14-Xgboost/part1_data_discovery.ipynb) - [15-案例:商品销售回归分析](https://gitee.com/rottengeek/machine_learning_summary/blob/master/15-案例:商品销售额回归分析/商品销售额预测.ipynb) - [16-GBDT_XGBoost_LightGBM对比](https://gitee.com/rottengeek/machine_learning_summary/blob/master/16-GBDT_XGBoost_LightGBM/GBDT_XGBoost_LightGBM.ipynb) - [17-使用lightgbm进行饭店流量预测](https://gitee.com/rottengeek/machine_learning_summary/blob/master/17-使用lightgbm进行饭店流量预测/饭店流量预测.ipynb) - 20-HMM案例实战 - [HMM实践](https://gitee.com/rottengeek/machine_learning_summary/blob/master/20.HMM案例实战/hmm实践.ipynb) - [时间序列](https://gitee.com/rottengeek/machine_learning_summary/blob/master/20.HMM案例实战/时间序列.ipynb) - 21-推荐系统 - [电影数据集推荐系统](https://gitee.com/rottengeek/machine_learning_summary/blob/master/21-推荐系统/rs_1.ipynb) 如果觉得我资料搜集和整体的还行,希望大佬打赏一下