# audio_classification **Repository Path**: rsmeng/audio_classification ## Basic Information - **Project Name**: audio_classification - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-05-07 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Audio classification using CNN and LSTM ## Data Visualization ### MFCC Features ### Spectrogram ### Raw Audio ## Results
CNN
Spectrogram MFCC
Dataset Train Validation Train Validation
urbansound8k 99.914 97.252 100 84.544
#
CNN-LSTM
Spectrogram MFCC
Dataset Train Validation Train Validation
urbansound8k 99.928 96.451 99.985 82.369
### Training Accuracy Plot ### Validation Accuracy Plot ### Training Error Plot ### Validation Error Plot ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install foobar. ```bash pip install requirements.txt ``` or ```bash conda create --name --file requirements.txt ``` ## Usage ### Dataset [urbansound8k] ### Pre-process Data ```bash python codes/pre_processing/pre_processing_urbansound.py ``` ### Train and Test ```bash python codes/baseline/main.py ``` [urbansound8k]: [https://urbansounddataset.weebly.com/urbansound8k.html] ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. ## License [MIT](https://choosealicense.com/licenses/mit/)