# monotonic_align **Repository Path**: ruby11dog/monotonic_align ## Basic Information - **Project Name**: monotonic_align - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-10-17 - **Last Updated**: 2023-10-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Adapted from the MAS in [Glow-TTS](https://github.com/jaywalnut310/glow-tts/tree/master/monotonic_align). I made it installable and added variants. # Installation ``` pip install git+https://github.com/resemble-ai/monotonic_align.git ``` Installing `monotonic_align` doesn't require torch, but using ``monotonic_align`` will. Please install PyTorch yourself, as its installation differ from system to system. # How to Use ```python # Suppose you have: # 1. a probability matrix of size (batch_size=B, symbol_len=S, mel_lens=T) # NOTE: a similarity matrix (a higher score means better) or negative cost will do # but may have issues. # 2. an array of symbol lengths `symbol_lens` of size (batch_size=B) # 3. an array of mel-spectrogram lengths `mel_lens` of size (batch_size=B) from monotonic_align import mask_from_lens, maximum_path mask_ST = mask_from_lens(similarity, symbol_lens, mel_lens) alignment = maximum_path(similarity, mask_ST) # (B, S, T) # NOTE: # - If `mask` is not specified, the default mask is `True` for all elements. # - You can specify `topology` if you want to use other variants of alignment algorithms. ```