# dl-scene **Repository Path**: ryan.van/dl-scene ## Basic Information - **Project Name**: dl-scene - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-17 - **Last Updated**: 2025-05-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks Official repository of the paper:\ **[SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks](https://arxiv.org/abs/2301.03512)**\ Thomas Monninger*, Julian Schmidt*, Jan Rupprecht, David Raba, Julian Jordan, Daniel Frank, Steffen Staab and Klaus Dietmayer\ *Thomas Monninger and Julian Schmidt are co-first authors. The order was determined alphabetically.\ \ IEEE Robotics and Automation Letters (RA-L), 2023 The repository contains the source code of our graph convolution operator and our experiments on publicly available knowledge graph datasets. ## Citation If you use our source code, please cite: ```bibtex @Article{monningerschmidt2023scene, author={Monninger, Thomas and Schmidt, Julian and Rupprecht, Jan and Raba, David and Jordan, Julian and Frank, Daniel and Staab, Steffen and Dietmayer, Klaus}, journal={IEEE Robotics and Automation Letters}, title={SCENE: Reasoning About Traffic Scenes Using Heterogeneous Graph Neural Networks}, year={2023}, volume={8}, number={3}, pages={1531--1538}, doi={10.1109/LRA.2023.3234771}} ``` ## License Creative Commons License
SCENE is licensed under Creative Commons Attribution-NonCommercial 4.0 International License. Check [LICENSE](LICENSE) for more information. ## Installation ### Install Anaconda We recommend using Anaconda. The installation is described on the following page:\ https://docs.anaconda.com/anaconda/install/linux/ ### Install Required Packages ```sh conda env create -f environment.yml ``` ### Activate Environment ```sh conda activate scene ``` ## Generate Results ```sh python3 main.py --dataset=aifb ``` Options for `--dataset` are: - `aifb`: AIFB知识图谱 - `mutag`: MUTAG分子图 - `bgs`: BGS地质数据集 - `am`: 亚马逊产品图 - `nuscenes`: NuScenes交通场景数据集 ### NuScenes数据集特别说明 #### 1. 安装开发工具包 ```bash # 安装最新稳定版 pip install nuscenes-devkit # 或安装特定版本(推荐) pip install nuscenes-devkit==1.1.10 ``` #### 2. 数据集下载与准备 **方法一:使用官方脚本下载** ```python from nuscenes import NuScenes # 下载迷你数据集(推荐首次使用) NuScenes.download('v1.0-mini', './data/nuscenes') # 下载完整数据集(需先申请权限) NuScenes.download('v1.0-trainval', './data/nuscenes') ``` **方法二:手动下载** 1. 访问[NuScenes官网](https://www.nuscenes.org)注册并申请权限 2. 下载以下文件到`./data/nuscenes`: ``` v1.0-trainval_meta.tgz # 元数据(必须) v1.0-trainval0*_blobs.tgz # 数据文件(共7个) ``` 3. 解压文件: ```bash # 单个文件解压 tar -xzvf v1.0-trainval_meta.tgz -C ./data/nuscenes # 批量解压 for f in v1.0-trainval*.tgz; do tar -xzvf "$f" -C ./data/nuscenes; done ``` #### 3. 数据验证 ```python from nuscenes import NuScenes # 验证数据集 nusc = NuScenes(version='v1.0-mini', dataroot='./data/nuscenes') print(f"数据集加载成功! 包含:") print(f"- {len(nusc.sample)} 个样本") print(f"- {len(nusc.sample_data)} 个传感器数据") ``` #### 4. 目录结构要求 ``` ./data/nuscenes/ ├── v1.0-mini/ # 或 v1.0-trainval │ ├── maps/ # 地图数据 │ ├── samples/ # 关键帧数据 │ ├── sweeps/ # 连续帧数据 │ └── v1.0-mini.json # 元数据文件 ``` #### 5. 注意事项 - 完整数据集需要约300GB空间 - 下载需要注册并通过申请 - 首次运行会构建缓存,约需30分钟 - 推荐使用迷你数据集(v1.0-mini)进行测试 ## Results Results are stored in the `results/` folder. By default, it contains the original results obtained on our test system.\ Values are reported in [our paper](https://arxiv.org/abs/2301.03512).\ Test system specifications: Intel Core i9-7920X, NVIDIA GeForce RTX 2080 Ti.