# CityEnv_Perception **Repository Path**: ryontang/CityEnv_Perception ## Basic Information - **Project Name**: CityEnv_Perception - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-03-10 - **Last Updated**: 2025-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CityEnv_Perception ## Introduction LiDAR perception based on Velodyne32c, there are 6 ros package: - bouding_box: shape estimate and 3D box visualization. - depth_cluster: contains segmentation and clustering algorithm which reproducts the work of paper "Efficient Online Segmentation for Sparse 3D Laser Scans" and "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance". The code is referred to [PRBonn/depth_clustering](https://github.com/PRBonn/depth_clustering) and [wangx1996/Lidar-Segementation](https://github.com/wangx1996/Lidar-Segementation). - kalman: kalman filter. - I_shape_track: contains shape estimate and l shape feature based target tracking algorithm which reproducts the work of paper "L-Shape Model Switching-Based Precise Motion Tracking". The code is referred to [kostaskonkk/datmo](https://github.com/kostaskonkk/datmo). - pcl_process: pcl process node which include the ROI extraCTION, RANSAC ground segmentation and euclidean clustering algorithm. The idea comes from the class lesson of "sensor fusion(Udacity)". - render: pcl viewer. Thanks to the reference work mentioned above! The effect of the perception-system is as follows