# CityEnv_Perception **Repository Path**: ryontang/CityEnv_Perception ## Basic Information - **Project Name**: CityEnv_Perception - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-03-10 - **Last Updated**: 2025-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CityEnv_Perception ## Introduction LiDAR perception based on Velodyne32c, there are 6 ros package: - bouding_box: shape estimate and 3D box visualization. - depth_cluster: contains segmentation and clustering algorithm which reproducts the work of paper "Efficient Online Segmentation for Sparse 3D Laser Scans" and "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance". The code is referred to [PRBonn/depth_clustering](https://github.com/PRBonn/depth_clustering) and [wangx1996/Lidar-Segementation](https://github.com/wangx1996/Lidar-Segementation). - kalman: kalman filter. - I_shape_track: contains shape estimate and l shape feature based target tracking algorithm which reproducts the work of paper "L-Shape Model Switching-Based Precise Motion Tracking". The code is referred to [kostaskonkk/datmo](https://github.com/kostaskonkk/datmo). - pcl_process: pcl process node which include the ROI extraCTION, RANSAC ground segmentation and euclidean clustering algorithm. The idea comes from the class lesson of "sensor fusion(Udacity)". - render: pcl viewer. Thanks to the reference work mentioned above! The effect of the perception-system is as follows

## References ### Ground Segmenters - [x] **Depth-cluster Segmentation**. PFG–Journal of Photogrammetry, 2017.(In this repository) ```bibtex @article{Igor2017Efficient, title={Efficient Online Segmentation for Sparse 3D Laser Scans}, author={Igor Bogoslavskyi and Cyrill Stachniss}, journal={PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science}, year={2017}, } ``` ### Non-ground Clusters - [x] **Cvc-cluster**. IROS, 2019.(In this repository) ```bibtex @inproceedings{2019Curved, title={Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance}, author={ Park, Seungcheol and Wang, Shuyu and Lim, Hunjung and Kang, U. }, booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, year={2019}, } ``` ### Shape estimation - [x] **L-shape**. IV, 2017.(In this repository) ```bibtex @inproceedings{2017Efficient, title={Efficient L-shape fitting for vehicle detection using laser scanners}, author={ Zhang, Xiao and Xu, Wenda and Dong, Chiyu and Dolan, John M. }, booktitle={2017 IEEE Intelligent Vehicles Symposium (IV)}, year={2017}, } ``` ### Tracking based on 3D object - [x] **L-Shape Model Switching-Based Precise Motion Tracking**. 2018.(In this repository) ```bibtex @article{2018L, title={L-Shape Model Switching-Based Precise Motion Tracking of Moving Vehicles Using Laser Scanners}, author={ Kim, Dongchul and Jo, Kichun and Lee, Minchul and Sunwoo, Myoungho }, journal={IEEE Transactions on Intelligent Transportation Systems}, volume={19}, number={2}, pages={598-612}, year={2018}, } ```