# GPR_3D_attribute **Repository Path**: sduem/gpr3dattribute ## Basic Information - **Project Name**: GPR_3D_attribute - **Description**: Implement ground penetrating radar data processing, offset imaging, attribute analysis, and 3D modeling. This program is used to analyze the restoration status of the Buddha statue of Sumeru. - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: https://git.em3d.cn/openSource/gpr3dattribute - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-17 - **Last Updated**: 2025-09-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GPR 3D attribute Imaging Toolkit This project provides a Python-based workflow for processing ground-penetrating radar (GPR) data from SEG-Y files, performing FK migration, and exporting the results as 3D point cloud data. It includes steps for data correction, background subtraction, tapering, migration, Hilbert envelope computation, and visualization. # Cite this work Junkai Ge, Huaifeng Sun, Xiaodong Li, Xushan Lu, Xuening Wang, Li Li, Kejia Hu, Decoding the stone Buddha: Three-dimensional ground penetrating radar attribute insights into cracks and restoration history of Sumeru throne, Journal of Cultural Heritage, Volume 76, November–December 2025, Pages 39-51 See the published paper at https://www.sciencedirect.com/science/article/pii/S1296207425001980 ## šŸŒ Key Features - Read and process SEG-Y GPR data using `segyio` - Remove static and background clutter using sliding window averaging - Apply custom tapering and FK migration - Generate and visualize migrated sections and Hilbert envelopes - Export processed results to `.dat` point cloud format for 3D visualization ## 🧩 Dependencies Make sure you have the following Python packages installed: ```bash pip install numpy matplotlib scipy segyio math pdb traceback tqdm