# Qt_SeamlessM4T **Repository Path**: seamless-m4t-demo/Qt_SeamlessM4T ## Basic Information - **Project Name**: Qt_SeamlessM4T - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-24 - **Last Updated**: 2023-11-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Qt and SeamlessM4T Use the flask framework to enable the SeamlessM4T large model on the server. ```python from flask import Flask, request import torch from seamless_communication.models.inference import Translator app = Flask(__name__) app.config['JSON_AS_ASCII'] = True translator = Translator("seamlessM4T_large", "vocoder_36langs", torch.device("cuda"), torch.float16) @app.route('/translate', methods=['POST']) def testpost(): if request.method == 'POST': input_text = request.json.get('text', '') translate_option = request.json.get('type', '') target_language = request.json.get('target', '') src_language = request.json.get('src', '') translated_text, _, _ = translator.predict(input_text, translate_option, target_language, src_lang=src_language) print(str(translated_text)) return str(translated_text) if __name__ == '__main__': #服务端口监听本机IP 地址和端口 app.run(host= '192.168.1.6', port=9979, threaded=True) ```