# ISDA-for-Deep-Networks **Repository Path**: shenghsin/ISDA-for-Deep-Networks ## Basic Information - **Project Name**: ISDA-for-Deep-Networks - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-11-02 - **Last Updated**: 2024-02-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ISDA-Pytorch The Implicit Semantic Data Augmentation (ISDA) algorithm implemented in Pytorch. - (NeurIPS 2019) [Implicit Semantic Data Augmentation for Deep Networks](https://arxiv.org/abs/1909.12220) - (T-PAMI) [Regularizing Deep Networks with Semantic Data Augmentation](https://arxiv.org/abs/2007.10538) **Update on 2021/01/17: Journal Version of ISDA is Accepted by T-PAMI!** **Update on 2020/04/25: Release Pre-trained Models on ImageNet.** **Update on 2020/04/24: Release Code for Image Classification on ImageNet and Semantic Segmentation on Cityscapes.** ## Introduction We propose a novel implicit semantic data augmentation (ISDA) approach to complement traditional augmentation techniques like flipping, translation or rotation. ISDA consistently improves the generalization performance of popular deep networks on supervised & semi-supervised image classification, semantic segmentation, object detection and instance segmentation.

## Citation If you find this work valuable or use our code in your own research, please consider citing us with the following bibtex: ``` @inproceedings{NIPS2019_9426, title = {Implicit Semantic Data Augmentation for Deep Networks}, author = {Wang, Yulin and Pan, Xuran and Song, Shiji and Zhang, Hong and Huang, Gao and Wu, Cheng}, booktitle = {Advances in Neural Information Processing Systems (NeurIPS)}, pages = {12635--12644}, year = {2019}, } @article{wang2021regularizing, title = {Regularizing deep networks with semantic data augmentation}, author = {Wang, Yulin and Huang, Gao and Song, Shiji and Pan, Xuran and Xia, Yitong and Wu, Cheng}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, year = {2021}, doi = {10.1109/TPAMI.2021.3052951} } ``` ## Get Started Please go to the folder [Image classification on CIFAR](https://github.com/blackfeather-wang/ISDA-for-Deep-Networks/tree/master/Image%20classification%20on%20CIFAR), [Image classification on ImageNet](https://github.com/blackfeather-wang/ISDA-for-Deep-Networks/tree/master/Image%20classification%20on%20ImageNet) and [Semantic segmentation on Cityscapes](https://github.com/blackfeather-wang/ISDA-for-Deep-Networks/tree/master/Semantic%20segmentation%20on%20Cityscapes) for specific docs. ## Pre-trained Models on ImageNet - Measured by Top-1 error. |Model|Params|Baseline|ISDA|Model| |-----|------|-----|-----|-----| |ResNet-50 |25.6M |23.0|**21.9**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/2ccd502cbf774b40a226/?dl=1) / [Google Drive](https://drive.google.com/open?id=1V2aYyrRY2EqKGxoEGUsHBwjHRMEVEj1N)| |ResNet-101 |44.6M |21.7|**20.8**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/4ac40c241b8941619109/?dl=1) / [Google Drive](https://drive.google.com/open?id=1LlmEc7UHgLRENpYb5xMOzcxtuABFhRyk)| |ResNet-152 |60.3M |21.3|**20.3**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/7707e8709b70446fb65e/?dl=1) / [Google Drive](https://drive.google.com/open?id=1yyGnqu1yegtje4Srn0PQK2_ZS1Q64Cv-)| |DenseNet-BC-121 |8.0M |23.7|**23.2**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/e5baa6f0ac2a42ba8421/?dl=1) / [Google Drive](https://drive.google.com/open?id=1m3KlCA0IS0OpG_Q0fHdGxuxtrCYCNYMj)| |DenseNet-BC-265 |33.3M |21.9|**21.2**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/ba91c2d5ce7b4650a143/?dl=1) / [Google Drive](https://drive.google.com/open?id=1RwFKPBs1KFnr3Ku0Q1Yuv24t-RvhDDiC)| |ResNeXt50, 32x4d |25.0M|22.5|**21.3**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/3ae2de3bdd13495ab181/?dl=1) / [Google Drive](https://drive.google.com/open?id=1vOHtNlMmjbEw0w96Xi855WZO0dCofEaw)| |ResNeXt101, 32x8d|88.8M|21.1|**20.1**|[Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/7dcca2bd9cfa426bb52d/?dl=1) / [Google Drive](https://drive.google.com/open?id=1pOneh2C3inPpzite68EHJrsiw2TVfa74)| ## Visualization of Augmented Samples - ImageNet

## Results - Supervised image classification on ImageNet

- Complementing traditional data augmentation techniques

- Semi-supervised image classification on CIFAR & SVHN

- Semantic segmentation on Cityscapes

- Object detection on MS COCO

- Instance segmentation on MS COCO

## Acknowledgment Our code for semantic segmentation is mainly based on [pytorch-segmentation-toolbox](https://github.com/speedinghzl/pytorch-segmentation-toolbox). ## To Do Update code for semi-supervised learning.