# Real-ESRGAN
**Repository Path**: shenghuo2/Real-ESRGAN
## Basic Information
- **Project Name**: Real-ESRGAN
- **Description**: Real-ESRGAN
- **Primary Language**: Unknown
- **License**: BSD-3-Clause
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-11-30
- **Last Updated**: 2021-11-30
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Real-ESRGAN
[](https://github.com/xinntao/Real-ESRGAN/releases)
[](https://pypi.org/project/realesrgan/)
[](https://github.com/xinntao/Real-ESRGAN/issues)
[](https://github.com/xinntao/Real-ESRGAN/issues)
[](https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE)
[](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/pylint.yml)
[](https://github.com/xinntao/Real-ESRGAN/blob/master/.github/workflows/publish-pip.yml)
[English](README.md) **|** [简体中文](README_CN.md)
1. Real-ESRGAN的[Colab Demo](https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing) 
.
2. **支持Intel/AMD/Nvidia显卡**的绿色版exe文件: [Windows版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-windows.zip) / [Linux版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-ubuntu.zip) / [macOS版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-macos.zip),详情请移步[这里](#便携版(绿色版)可执行文件)。NCNN的实现在 [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan)。
感谢大家的关注和使用:-) 关于动漫插画的模型,目前还有很多问题,主要有: 1. 视频处理不了; 2. 景深虚化有问题; 3. 不可调节, 效果过了; 4. 改变原来的风格。大家提供了很好的反馈。这些反馈会逐步更新在 [这个文档](feedback.md)。希望不久之后,有新模型可以使用.
Real-ESRGAN 的目标是开发出**实用的图像修复算法**。
我们在 ESRGAN 的基础上使用纯合成的数据来进行训练,以使其能被应用于实际的图片修复的场景(顾名思义:Real-ESRGAN)。
:art: Real-ESRGAN 需要,也很欢迎你的贡献,如新功能、模型、bug修复、建议、维护等等。详情可以查看[CONTRIBUTING.md](CONTRIBUTING.md),所有的贡献者都会被列在[此处](README_CN.md#hugs-感谢)。
:question: 常见的问题可以在[FAQ.md](FAQ.md)中找到答案。(好吧,现在还是空白的=-=||)
:triangular_flag_on_post: **更新**
- :white_check_mark: 添加了ncnn 实现:[Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan).
- :white_check_mark: 添加了 [*RealESRGAN_x4plus_anime_6B.pth*](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth),对二次元图片进行了优化,并减少了model的大小。详情 以及 与[waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan)的对比请查看[**anime_model.md**](docs/anime_model.md)
- :white_check_mark: 支持用户在自己的数据上进行微调 (finetune):[详情](Training.md#Finetune-Real-ESRGAN-on-your-own-dataset)
- :white_check_mark: 支持使用[GFPGAN](https://github.com/TencentARC/GFPGAN)**增强人脸**
- :white_check_mark: 通过[Gradio](https://github.com/gradio-app/gradio)添加到了[Huggingface Spaces](https://huggingface.co/spaces)(一个机器学习应用的在线平台):[Gradio在线版](https://huggingface.co/spaces/akhaliq/Real-ESRGAN)。感谢[@AK391](https://github.com/AK391)
- :white_check_mark: 支持任意比例的缩放:`--outscale`(实际上使用`LANCZOS4`来更进一步调整输出图像的尺寸)。添加了*RealESRGAN_x2plus.pth*模型
- :white_check_mark: [推断脚本](inference_realesrgan.py)支持: 1) 分块处理**tile**; 2) 带**alpha通道**的图像; 3) **灰色**图像; 4) **16-bit**图像.
- :white_check_mark: 训练代码已经发布,具体做法可查看:[Training.md](Training.md)。
---
如果 Real-ESRGAN 对你有帮助,可以给本项目一个 Star :star: ,或者推荐给你的朋友们,谢谢!:blush: 
其他推荐的项目:
:arrow_forward: [GFPGAN](https://github.com/TencentARC/GFPGAN): 实用的人脸复原算法 
:arrow_forward: [BasicSR](https://github.com/xinntao/BasicSR): 开源的图像和视频工具箱
:arrow_forward: [facexlib](https://github.com/xinntao/facexlib): 提供与人脸相关的工具箱
:arrow_forward: [HandyView](https://github.com/xinntao/HandyView): 基于PyQt5的图片查看器,方便查看以及比较 
---
### :book: Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
> [[论文](https://arxiv.org/abs/2107.10833)]   [项目主页]   [[YouTube 视频](https://www.youtube.com/watch?v=fxHWoDSSvSc)]   [[B站视频](https://www.bilibili.com/video/BV1H34y1m7sS/)]   [[Poster](https://xinntao.github.io/projects/RealESRGAN_src/RealESRGAN_poster.pdf)]   [[PPT](https://docs.google.com/presentation/d/1QtW6Iy8rm8rGLsJ0Ldti6kP-7Qyzy6XL/edit?usp=sharing&ouid=109799856763657548160&rtpof=true&sd=true)]
> [Xintao Wang](https://xinntao.github.io/), Liangbin Xie, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) 
> Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
  
---
我们提供了一套训练好的模型(*RealESRGAN_x4plus.pth*),可以进行4倍的超分辨率。
**现在的 Real-ESRGAN 还是有几率失败的,因为现实生活的降质过程比较复杂。**
而且,本项目对**人脸以及文字之类**的效果还不是太好,但是我们会持续进行优化的。
Real-ESRGAN 将会被长期支持,我会在空闲的时间中持续维护更新。
这些是未来计划的几个新功能:
- [ ] 优化人脸
- [ ] 优化文字
- [x] 优化动画图像
- [ ] 支持更多的超分辨率比例
- [ ] 可调节的复原
如果你有好主意或需求,欢迎在 issue 或 discussion 中提出。
如果你有一些 Real-ESRGAN 中有问题的照片,你也可以在 issue 或者 discussion 中发出来。我会留意(但是不一定能解决:stuck_out_tongue:)。如果有必要的话,我还会专门开一页来记录那些有待解决的图像。
---
### 便携版(绿色版)可执行文件
你可以下载**支持Intel/AMD/Nvidia显卡**的绿色版exe文件: [Windows版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-windows.zip) / [Linux版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-ubuntu.zip) / [macOS版](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-macos.zip)。
绿色版指的是这些exe你可以直接运行(放U盘里拷走都没问题),因为里面已经有所需的文件和模型了。它不需要 CUDA 或者 PyTorch运行环境。
你可以通过下面这个命令来运行(Windows版本的例子,更多信息请查看对应版本的README.md):
```bash
./realesrgan-ncnn-vulkan.exe -i 输入图像.jpg -o 输出图像.png
```
我们提供了三种模型:
1. realesrgan-x4plus(默认)
2. reaesrnet-x4plus
3. realesrgan-x4plus-anime(针对动漫插画图像优化,有更小的体积)
你可以通过`-n`参数来使用其他模型,例如`./realesrgan-ncnn-vulkan.exe -i 二次元图片.jpg -o 二刺螈图片.png -n realesrgan-x4plus-anime`
### 可执行文件的用法
1. 更多细节可以参考 [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan#computer-usages).
2. 注意:可执行文件并没有支持 python 脚本 `inference_realesrgan.py` 中所有的功能,比如 `outscale` 选项) .
```console
Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...
  -h                   show this help
  -v                   verbose output
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (4, default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        folder path to pre-trained models(default=models)
  -n model-name        model name (default=realesrgan-x4plus, can be realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
  -g gpu-id            gpu device to use (default=0) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode
  -f format            output image format (jpg/png/webp, default=ext/png)
```
由于这些exe文件会把图像分成几个板块,然后来分别进行处理,再合成导出,输出的图像可能会有一点割裂感(而且可能跟PyTorch的输出不太一样)
这些exe文件均基于[Tencent/ncnn](https://github.com/Tencent/ncnn)以及[nihui](https://github.com/nihui)的[realsr-ncnn-vulkan](https://github.com/nihui/realsr-ncnn-vulkan),感谢!
---
## :wrench: 依赖以及安装
- Python >= 3.7 (推荐使用[Anaconda](https://www.anaconda.com/download/#linux)或[Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 1.7](https://pytorch.org/)
#### 安装
1. 把项目克隆到本地
    ```bash
    git clone https://github.com/xinntao/Real-ESRGAN.git
    cd Real-ESRGAN
    ```
2. 安装各种依赖
    ```bash
    # 安装 basicsr - https://github.com/xinntao/BasicSR
    # 我们使用BasicSR来训练以及推断
    pip install basicsr
    # facexlib和gfpgan是用来增强人脸的
    pip install facexlib
    pip install gfpgan
    pip install -r requirements.txt
    python setup.py develop
    ```
## :zap: 快速上手
### 普通图片
下载我们训练好的模型: [RealESRGAN_x4plus.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth)
```bash
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models
```
推断!
```bash
python inference_realesrgan.py --model_path experiments/pretrained_models/RealESRGAN_x4plus.pth --input inputs --face_enhance
```
结果在`results`文件夹
### 动画图片
  
训练好的模型: [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)
有关[waifu2x](https://github.com/nihui/waifu2x-ncnn-vulkan)的更多信息和对比在[**anime_model.md**](docs/anime_model.md)中。
```bash
# 下载模型
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P experiments/pretrained_models
# 推断
python inference_realesrgan.py --model_path experiments/pretrained_models/RealESRGAN_x4plus_anime_6B.pth --input inputs
```
结果在`results`文件夹
### Python 脚本的用法
1. 虽然你实用了 X4 模型,但是你可以 **输出任意尺寸比例的图片**,只要实用了 `outscale` 参数. 程序会进一步对模型的输出图像进行缩放。
```console
Usage: python inference_realesrgan.py --model_path experiments/pretrained_models/RealESRGAN_x4plus.pth --input infile --output outfile [options]...
A common command: python inference_realesrgan.py --model_path experiments/pretrained_models/RealESRGAN_x4plus.pth --input infile --netscale 4 --outscale 3.5 --half --face_enhance
  -h                   show this help
  --input              Input image or folder. Default: inputs
  --output             Output folder. Default: results
  --model_path         Path to the pre-trained model. Default: experiments/pretrained_models/RealESRGAN_x4plus.pth
  --netscale           Upsample scale factor of the network. Default: 4
  --outscale           The final upsampling scale of the image. Default: 4
  --suffix             Suffix of the restored image. Default: out
  --tile               Tile size, 0 for no tile during testing. Default: 0
  --face_enhance       Whether to use GFPGAN to enhance face. Default: False
  --half               Whether to use half precision during inference. Default: False
  --ext                Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
```
## :european_castle: 模型库
- [RealESRGAN_x4plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth): X4 model for general images
- [RealESRGAN_x4plus_anime_6B](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth): Optimized for anime images; 6 RRDB blocks (slightly smaller network)
- [RealESRGAN_x2plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth): X2 model for general images
- [RealESRNet_x4plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth): X4 model with MSE loss (over-smooth effects)
- [official ESRGAN_x4](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth): official ESRGAN model (X4)
下面是 **判别器** 模型, 他们经常被用来微调(fine-tune)模型.
- [RealESRGAN_x4plus_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth)
- [RealESRGAN_x2plus_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x2plus_netD.pth)
- [RealESRGAN_x4plus_anime_6B_netD](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B_netD.pth)
## :computer: 训练,在你的数据上微调(Fine-tune)
这里有一份详细的指南:[Training.md](Training.md).
## BibTeX 引用
    @Article{wang2021realesrgan,
        title={Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
        author={Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
        journal={arXiv:2107.10833},
        year={2021}
    }
## :e-mail: 联系我们
如果你有任何问题,请通过 `xintao.wang@outlook.com` 或 `xintaowang@tencent.com` 联系我们。
## :hugs: 感谢
感谢所有的贡献者大大们~
- [AK391](https://github.com/AK391): 通过[Gradio](https://github.com/gradio-app/gradio)添加到了[Huggingface Spaces](https://huggingface.co/spaces)(一个机器学习应用的在线平台):[Gradio在线版](https://huggingface.co/spaces/akhaliq/Real-ESRGAN)。
- [Asiimoviet](https://github.com/Asiimoviet): 把 README.md 文档 翻译成了中文。
- [2ji3150](https://github.com/2ji3150): 感谢详尽并且富有价值的[反馈、建议](https://github.com/xinntao/Real-ESRGAN/issues/131).