# OMIGA **Repository Path**: shi_chen_hao/OMIGA ## Basic Information - **Project Name**: OMIGA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-16 - **Last Updated**: 2024-01-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization (NeurIPS 2023) The official implementation of "[Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization](https://arxiv.org/abs/2307.11620)". OMIGA provides a principled framework to convert global-level value regularization into equivalent implicit local value regularizations and simultaneously enables in-sample learning, thus elegantly bridging multi-agent value decomposition and policy learning with offline regularizations. This repository is inspired by the [TRPO-in-MARL](https://github.com/cyanrain7/TRPO-in-MARL) library for online Multi-Agent RL. **This repo provides the implementation of OMIGA in Multi-agent MuJoCo.** ## Installation ``` Bash conda create -n env_name python=3.9 conda activate OMIGA git clone https://github.com/ZhengYinan-AIR/OMIGA.git cd OMIGA pip install -r requirements.txt ``` ## How to run Before running the code, you need to download the necessary offline datasets ([Download link](https://cloud.tsinghua.edu.cn/d/dcf588d659214a28a777/)). Then, make sure the config file at [configs/config.py](https://github.com/ZhengYinan-AIR/Offline-MARL/blob/master/configs/config.py) is correct. Set the **data_dir** parameter as the storage location for the downloaded data, and configure parameters **scenario**, **agent_conf**, and **data_type**. You can run the code as follows: ``` Bash # If the location of the dataset is at: "/data/Ant-v2-2x4-expert.hdf5" cd OMIGA python run_mujoco.py --data_dir="/data/" --scenario="Ant-v2" --agent_conf="2x4" --data_type="expert" ``` ## Weights and Biases Online Visualization Integration This codebase can also log to [W&B online visualization platform](https://wandb.ai/site). To log to W&B, you first need to set your W&B API key environment variable: ``` wandb online export WANDB_API_KEY='YOUR W&B API KEY HERE' ``` Then you can run experiments with W&B logging turned on: ``` python run_mujoco.py --wandb=True ``` ## Bibtex If you find our code and paper can help, please cite our paper as: ``` @article{wang2023offline, title={Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization}, author={Wang, Xiangsen and Xu, Haoran and Zheng, Yinan and Zhan, Xianyuan}, journal={Advances in Neural Information Processing Systems}, year={2023} } ```