# tensorflow_object_detector **Repository Path**: shy718/tensorflow_object_detector ## Basic Information - **Project Name**: tensorflow_object_detector - **Description**: Tensorflow Object Detector - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tensorflow Object Detector with ROS ## Requirements: Tensorflow and ROS This guide targets Ubuntu 16.04 and ROS Kinetic ## Steps: To run Default SSD (Single Shot Detection) algorithm: 1. Install ROS: http://wiki.ros.org/kinetic/Installation/Ubuntu 2. Install camera dependencies `sudo apt-get install ros-kinetic-usb_cam ros-kinetic-openni2-launch` 3. Install tensorflow into python virtualenv: https://www.tensorflow.org/install/install_linux `sudo apt-get install python-pip python-dev python-virtualenv` `virtualenv --system-site-packages ~/tensorflow` `source ~/tensorflow/bin/activate` `easy_install -U pip` `pip install --upgrade tensorflow` 4. `mkdir ~/catkin_ws/ && mkdir ~/catkin_ws/src/` 5. Clone standard Vision messages repository and this repository into `catkin_ws/src`: `cd ~/catkin_ws/src` `git clone https://github.com/Kukanani/vision_msgs.git` `git clone https://github.com/osrf/tensorflow_object_detector.git` 6. Build tensorflow_object_detector and Vision message `cd ~/catkin_ws && catkin_make` 7. Source catkin workspace's setup.bash: `source ~/catkin_ws/devel/setup.bash` 8. Plug in camera and launch Single Shot Detector (varies per camera, NOTE: `object_detect.launch` also launches the openni2.launch file for the camera. If you are using any other camera, please change the camera topic in the launch file before launching the file) `roslaunch tensorflow_object_detector object_detect.launch` OR `roslaunch tensorflow_object_detector usb_cam_detector.launch` If you want to try any other ML model: 1. Download any Object Detection Models from the Tensorflow Object detection API and place it in `data/models/`. You can find the models in [tensorflow Object Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) . Extract the `tar.gz` file. 2. Edit the MODEL_NAME and LABEL_NAME in detect_ros.py. By default it is `ssd_mobilenet_v1_coco_11_06_2017` with `mscoco_label_map.pbtxt` respectively.