# LVI-SAM
**Repository Path**: slam_-rep/LVI-SAM
## Basic Information
- **Project Name**: LVI-SAM
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-11-30
- **Last Updated**: 2021-12-05
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# LVI-SAM
This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of [LIO-SAM](https://github.com/TixiaoShan/LIO-SAM/tree/a246c960e3fca52b989abf888c8cf1fae25b7c25) and [Vins-Mono](https://github.com/HKUST-Aerial-Robotics/VINS-Mono) at a system level.
---
## Dependency
- [ROS](http://wiki.ros.org/ROS/Installation) (Tested with kinetic and melodic)
- [gtsam](https://github.com/borglab/gtsam/releases) (Georgia Tech Smoothing and Mapping library)
```
wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip
cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/
mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j4
```
- [Ceres](https://github.com/ceres-solver/ceres-solver/releases) (C++ library for modeling and solving large, complicated optimization problems)
```
sudo apt-get install -y libgoogle-glog-dev
sudo apt-get install -y libatlas-base-dev
wget -O ~/Downloads/ceres.zip https://github.com/ceres-solver/ceres-solver/archive/1.14.0.zip
cd ~/Downloads/ && unzip ceres.zip -d ~/Downloads/
cd ~/Downloads/ceres-solver-1.14.0
mkdir ceres-bin && cd ceres-bin
cmake ..
sudo make install -j4
```
---
## Compile
You can use the following commands to download and compile the package.
```
cd ~/catkin_ws/src
git clone https://github.com/TixiaoShan/LVI-SAM.git
cd ..
catkin_make
```
---
## Datasets
The datasets used in the paper can be downloaded from Google Drive. The data-gathering sensor suite includes: Velodyne VLP-16 lidar, FLIR BFS-U3-04S2M-CS camera, MicroStrain 3DM-GX5-25 IMU, and Reach RS+ GPS.
```
https://drive.google.com/drive/folders/1q2NZnsgNmezFemoxhHnrDnp1JV_bqrgV?usp=sharing
```
**Note** that the images in the provided bag files are in compressed format. So a decompression command is added at the last line of ```launch/module_sam.launch```. If your own bag records the raw image data, please comment this line out.
---
## Run the package
1. Configure parameters:
```
Configure sensor parameters in the .yaml files in the ```config``` folder.
```
2. Run the launch file:
```
roslaunch lvi_sam run.launch
```
3. Play existing bag files:
```
rosbag play handheld.bag
```
---
## Paper
Thank you for citing our [paper](./doc/paper.pdf) if you use any of this code or datasets.
```
@inproceedings{lvisam2021shan,
title={LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping},
author={Shan, Tixiao and Englot, Brendan and Ratti, Carlo and Rus Daniela},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
pages={to-be-added},
year={2021},
organization={IEEE}
}
```
---
## Acknowledgement
- The visual-inertial odometry module is adapted from [Vins-Mono](https://github.com/HKUST-Aerial-Robotics/VINS-Mono).
- The lidar-inertial odometry module is adapted from [LIO-SAM](https://github.com/TixiaoShan/LIO-SAM/tree/a246c960e3fca52b989abf888c8cf1fae25b7c25).