# openvino_training_extensions **Repository Path**: smartwell/openvino_training_extensions ## Basic Information - **Project Name**: openvino_training_extensions - **Description**: Trainable models and NN optimization tools - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-08-09 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Training Toolbox for TensorFlow Training Toolbox for TensorFlow provides a convenient environment to train Deep Learning models and convert them using [OpenVINO™ Toolkit](https://software.intel.com/en-us/openvino-toolkit) for optimized inference. ## Pre-requisites - Ubuntu 16.04 / 18.04 - Python 3.4-3.6 - [libturbojpeg](https://github.com/ajkxyz/jpeg4py) - For Python pre-requisites refer to `requirements.txt` - (Optional) [TensorFlow GPU pre-requisites](https://www.tensorflow.org/install/gpu). - (Optional) [OpenVINO™ R3](https://software.intel.com/en-us/openvino-toolkit) for exporting of the trained models # Quick Start Guide ## Setup Training Toolbox for TensorFlow 1. Clone repository in the working directory ``` cd / git clone https://github.com/opencv/training_toolbox_tensorflow.git cd training_toolbox_tensorflow git submodule update --init --recursive ``` 2. Install prerequisites ``` sudo apt-get install libturbojpeg python3-tk python3-pip virtualenv 2to3 ``` 3. Create virtual environment ``` bash tools/init_venv.sh ``` 4. Start to work ``` cd //training_toolbox_tensorflow . venv/bin/activate ``` ## Tests In virtual environment run tests: ``` cd training_toolbox nosetests ``` or if you are going to use the OpenVino toolkit: ``` cd training_toolbox export OPEN_VINO_DIR= nosetests ``` Note: if you have installed the OpenVino toolkit after creating a virtual environment then you have to [recreate one](#create_venv) to install required packages for the Model Optimizer into one. Do not forget to update several environment variables are required to compile and run OpenVINO™ toolkit applications, for details see: [https://software.intel.com/en-us/articles/OpenVINO-Install-Linux](https://software.intel.com/en-us/articles/OpenVINO-Install-Linux). ## Models After installation, you are ready to train your own models, evaluate them, use them for predictions. [SSD Object Detection](training_toolbox/ssd_detector/README.md)