# CarND-Capstone **Repository Path**: software_test/CarND-Capstone ## Basic Information - **Project Name**: CarND-Capstone - **Description**: 基于ROS的路径点循迹、交通灯识别。使用来自udacity的仿真器 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 0 - **Created**: 2020-04-13 - **Last Updated**: 2025-04-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README This is the project repo for the final project of the Udacity Self-Driving Car Nanodegree: Programming a Real Self-Driving Car. For more information about the project, see the project introduction [here](https://classroom.udacity.com/nanodegrees/nd013/parts/6047fe34-d93c-4f50-8336-b70ef10cb4b2/modules/e1a23b06-329a-4684-a717-ad476f0d8dff/lessons/462c933d-9f24-42d3-8bdc-a08a5fc866e4/concepts/5ab4b122-83e6-436d-850f-9f4d26627fd9). ### Native Installation * Be sure that your workstation is running Ubuntu 16.04 Ubuntu 18.04 . [Ubuntu downloads can be found here](https://www.ubuntu.com/download/desktop). * If using a Virtual Machine to install Ubuntu, use the following configuration as minimum: * 2 CPU * 2 GB system memory * 25 GB of free hard drive space * Follow these instructions to install ROS * [ROS Kinetic](http://wiki.ros.org/kinetic/Installation/Ubuntu) if you have Ubuntu 16.04. * [ROS Indigo](http://wiki.ros.org/indigo/Installation/Ubuntu) if you have Ubuntu 14.04. * [Dataspeed DBW](https://bitbucket.org/DataspeedInc/dbw_mkz_ros) * Use this option to install the SDK on a workstation that already has ROS installed: [One Line SDK Install (binary)](https://bitbucket.org/DataspeedInc/dbw_mkz_ros/src/81e63fcc335d7b64139d7482017d6a97b405e250/ROS_SETUP.md?fileviewer=file-view-default) * Download the [Udacity Simulator](https://github.com/udacity/CarND-Capstone/releases). ### Usage 1. Clone the project repository 2. Install python dependencies ```bash cd CarND-Capstone pip install -r requirements.txt ``` 3. Make and run styx ```bash cd ros catkin_make source devel/setup.sh roslaunch launch/styx.launch ``` 4. Run the simulator ### Real world testing 1. Download [training bag](https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/traffic_light_bag_file.zip) that was recorded on the Udacity self-driving car. 2. Unzip the file ```bash unzip traffic_light_bag_file.zip ``` 3. Play the bag file ```bash rosbag play -l traffic_light_bag_file/traffic_light_training.bag ``` 4. Launch your project in site mode ```bash cd CarND-Capstone/ros roslaunch launch/site.launch ``` 5. Confirm that traffic light detection works on real life images ### Result I record the performance of my code in simulator. Please check this [video](project_output.mp4)