Fetch the repository succeeded.
/*
Copyright Suzhou Tongji Fintech Research Institute 2017 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package sm2
// reference to ecdsa
import (
"bytes"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/elliptic"
"crypto/rand"
"crypto/sha512"
"encoding/asn1"
"encoding/binary"
"errors"
"io"
"math/big"
"gitee.com/solidone/gmhttp/gmsm/sm3"
)
var (
default_uid = []byte{0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}
)
const (
aesIV = "IV for <SM2> CTR"
)
type PublicKey struct {
elliptic.Curve
X, Y *big.Int
}
type PrivateKey struct {
PublicKey
D *big.Int
}
type sm2Signature struct {
R, S *big.Int
}
// The SM2's private key contains the public key
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
func SignDigitToSignData(r, s *big.Int) ([]byte, error) {
return asn1.Marshal(sm2Signature{r, s})
}
func SignDataToSignDigit(sign []byte) (*big.Int, *big.Int, error) {
var sm2Sign sm2Signature
_, err := asn1.Unmarshal(sign, &sm2Sign)
if err != nil {
return nil, nil, err
}
return sm2Sign.R, sm2Sign.S, nil
}
// sign format = 30 + len(z) + 02 + len(r) + r + 02 + len(s) + s, z being what follows its size, ie 02+len(r)+r+02+len(s)+s
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
//r, s, err := Sign(priv, msg)
r, s, err := Sm2Sign(priv, msg, default_uid)
if err != nil {
return nil, err
}
return asn1.Marshal(sm2Signature{r, s})
}
func (priv *PrivateKey) Decrypt(data []byte) ([]byte, error) {
return Decrypt(priv, data)
}
func (pub *PublicKey) Verify(msg []byte, sign []byte) bool {
var sm2Sign sm2Signature
_, err := asn1.Unmarshal(sign, &sm2Sign)
if err != nil {
return false
}
return Sm2Verify(pub, msg, default_uid, sm2Sign.R, sm2Sign.S)
//return Verify(pub, msg, sm2Sign.R, sm2Sign.S)
}
func (pub *PublicKey) Encrypt(data []byte) ([]byte, error) {
return Encrypt(pub, data)
}
var one = new(big.Int).SetInt64(1)
func intToBytes(x int) []byte {
var buf = make([]byte, 4)
binary.BigEndian.PutUint32(buf, uint32(x))
return buf
}
func kdf(x, y []byte, length int) ([]byte, bool) {
var c []byte
ct := 1
h := sm3.New()
x = append(x, y...)
for i, j := 0, (length+31)/32; i < j; i++ {
h.Reset()
h.Write(x)
h.Write(intToBytes(ct))
hash := h.Sum(nil)
if i+1 == j && length%32 != 0 {
c = append(c, hash[:length%32]...)
} else {
c = append(c, hash...)
}
ct++
}
for i := 0; i < length; i++ {
if c[i] != 0 {
return c, true
}
}
return c, false
}
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
params := c.Params()
b := make([]byte, params.BitSize/8+8)
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(params.N, one)
k.Mod(k, n)
k.Add(k, one)
return
}
func GenerateKey() (*PrivateKey, error) {
c := P256Sm2()
k, err := randFieldElement(c, rand.Reader)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return priv, nil
}
var errZeroParam = errors.New("zero parameter")
func Sign(priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
return Sm2Sign(priv, hash, default_uid)
}
func Sign_old(priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
entropylen := (priv.Curve.Params().BitSize + 7) / 16
if entropylen > 32 {
entropylen = 32
}
entropy := make([]byte, entropylen)
_, err = io.ReadFull(rand.Reader, entropy)
if err != nil {
return
}
// Initialize an SHA-512 hash context; digest ...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
csprng := cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
if N.Sign() == 0 {
return nil, nil, errZeroParam
}
var k *big.Int
e := new(big.Int).SetBytes(hash)
for { // 调整算法细节以实现SM2
for {
k, err = randFieldElement(c, csprng)
if err != nil {
r = nil
return
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
r.Add(r, e)
r.Mod(r, N)
if r.Sign() != 0 {
break
}
if t := new(big.Int).Add(r, k); t.Cmp(N) == 0 {
break
}
}
rD := new(big.Int).Mul(priv.D, r)
s = new(big.Int).Sub(k, rD)
d1 := new(big.Int).Add(priv.D, one)
d1Inv := new(big.Int).ModInverse(d1, N)
s.Mul(s, d1Inv)
s.Mod(s, N)
if s.Sign() != 0 {
break
}
}
return
}
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
return Sm2Verify(pub, hash, default_uid, r, s)
}
func Verify_old(pub *PublicKey, hash []byte, r, s *big.Int) bool {
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
// 调整算法细节以实现SM2
t := new(big.Int).Add(r, s)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
x1, y1 := c.ScalarBaseMult(s.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
x, _ = c.Add(x1, y1, x2, y2)
e := new(big.Int).SetBytes(hash)
x.Add(x, e)
x.Mod(x, N)
return x.Cmp(r) == 0
}
func Sm2Sign(priv *PrivateKey, msg, uid []byte) (r, s *big.Int, err error) {
za, err := ZA(&priv.PublicKey, uid)
if err != nil {
return nil, nil, err
}
e, err := msgHash(za, msg)
if err != nil {
return nil, nil, err
}
c := priv.PublicKey.Curve
N := c.Params().N
if N.Sign() == 0 {
return nil, nil, errZeroParam
}
var k *big.Int
for { // 调整算法细节以实现SM2
for {
k, err = randFieldElement(c, rand.Reader)
if err != nil {
r = nil
return
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
r.Add(r, e)
r.Mod(r, N)
if r.Sign() != 0 {
break
}
if t := new(big.Int).Add(r, k); t.Cmp(N) == 0 {
break
}
}
rD := new(big.Int).Mul(priv.D, r)
s = new(big.Int).Sub(k, rD)
d1 := new(big.Int).Add(priv.D, one)
d1Inv := new(big.Int).ModInverse(d1, N)
s.Mul(s, d1Inv)
s.Mod(s, N)
if s.Sign() != 0 {
break
}
}
return
}
func Sm2Verify(pub *PublicKey, msg, uid []byte, r, s *big.Int) bool {
c := pub.Curve
//fmt.Printf("pub.Curve %v\n", c)
N := c.Params().N
//fmt.Printf("------c.N = %v, x = %X,y = %X\n", N, pub.X,pub.Y)
//fmt.Printf("------uid = %X, r=%v, s=%v\n", uid,r,s)
one := new(big.Int).SetInt64(1)
//fmt.Printf("-----one = %v,s = %v\n",one,s)
if r.Cmp(one) < 0 || s.Cmp(one) < 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
za, err := ZA(pub, uid)
//fmt.Printf("-----za = %v\n",za)
if err != nil {
return false
}
e, err := msgHash(za, msg)
//fmt.Printf("-----e = %v\n",e)
if err != nil {
return false
}
t := new(big.Int).Add(r, s)
//fmt.Printf("-----t = %v\n",t)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
x1, y1 := c.ScalarBaseMult(s.Bytes())
//fmt.Printf("-----x1 = %v,y1 = %v\n",x1,y1)
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
//fmt.Printf("-----x2 = %v,y2 = %v\n",x2,y2)
x, _ = c.Add(x1, y1, x2, y2)
//fmt.Printf("-----x = %v\n",x)
x.Add(x, e)
//fmt.Printf("-----x 1 = %v\n",x)
x.Mod(x, N)
//fmt.Printf("-----x 2 = %v\n",x)
v := (x.Cmp(r) == 0)
//fmt.Printf("-----v = %v\n",v)
return v
}
func Sm2Verify_bak(pub *PublicKey, msg, uid []byte, r, s *big.Int) bool {
c := pub.Curve
N := c.Params().N
//fmt.Printf("------c.N = %v, x = %X,y = %X\n", N, pub.X,pub.Y)
//fmt.Printf("------uid = %X, r=%v, s=%v\n", uid,r,s)
one := new(big.Int).SetInt64(1)
if r.Cmp(one) < 0 || s.Cmp(one) < 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
za, err := ZA(pub, uid)
if err != nil {
return false
}
e, err := msgHash(za, msg)
if err != nil {
return false
}
t := new(big.Int).Add(r, s)
t.Mod(t, N)
if t.Sign() == 0 {
return false
}
var x *big.Int
x1, y1 := c.ScalarBaseMult(s.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, t.Bytes())
x, _ = c.Add(x1, y1, x2, y2)
x.Add(x, e)
x.Mod(x, N)
return x.Cmp(r) == 0
}
func msgHash(za, msg []byte) (*big.Int, error) {
e := sm3.New()
e.Write(za)
e.Write(msg)
return new(big.Int).SetBytes(e.Sum(nil)[:32]), nil
}
// ZA = H256(ENTLA || IDA || a || b || xG || yG || xA || yA)
func ZA(pub *PublicKey, uid []byte) ([]byte, error) {
za := sm3.New()
uidLen := len(uid)
if uidLen >= 8192 {
return []byte{}, errors.New("SM2: uid too large")
}
Entla := uint16(8 * uidLen)
za.Write([]byte{byte((Entla >> 8) & 0xFF)})
za.Write([]byte{byte(Entla & 0xFF)})
za.Write(uid)
za.Write(sm2P256ToBig(&sm2P256.a).Bytes())
za.Write(sm2P256.B.Bytes())
za.Write(sm2P256.Gx.Bytes())
za.Write(sm2P256.Gy.Bytes())
xBuf := pub.X.Bytes()
yBuf := pub.Y.Bytes()
if n := len(xBuf); n < 32 {
xBuf = append(zeroByteSlice()[:32-n], xBuf...)
}
za.Write(xBuf)
za.Write(yBuf)
return za.Sum(nil)[:32], nil
}
// 32byte
func zeroByteSlice() []byte {
return []byte{
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
}
}
/*
* sm2密文结构如下:
* x
* y
* hash
* CipherText
*/
func Encrypt(pub *PublicKey, data []byte) ([]byte, error) {
length := len(data)
for {
c := []byte{}
curve := pub.Curve
k, err := randFieldElement(curve, rand.Reader)
if err != nil {
return nil, err
}
x1, y1 := curve.ScalarBaseMult(k.Bytes())
x2, y2 := curve.ScalarMult(pub.X, pub.Y, k.Bytes())
x1Buf := x1.Bytes()
y1Buf := y1.Bytes()
x2Buf := x2.Bytes()
y2Buf := y2.Bytes()
if n := len(x1Buf); n < 32 {
x1Buf = append(zeroByteSlice()[:32-n], x1Buf...)
}
if n := len(y1Buf); n < 32 {
y1Buf = append(zeroByteSlice()[:32-n], y1Buf...)
}
if n := len(x2Buf); n < 32 {
x2Buf = append(zeroByteSlice()[:32-n], x2Buf...)
}
if n := len(y2Buf); n < 32 {
y2Buf = append(zeroByteSlice()[:32-n], y2Buf...)
}
c = append(c, x1Buf...) // x分量
c = append(c, y1Buf...) // y分量
tm := []byte{}
tm = append(tm, x2Buf...)
tm = append(tm, data...)
tm = append(tm, y2Buf...)
h := sm3.Sm3Sum(tm)
c = append(c, h...)
ct, ok := kdf(x2Buf, y2Buf, length) // 密文
if !ok {
continue
}
c = append(c, ct...)
for i := 0; i < length; i++ {
c[96+i] ^= data[i]
}
return append([]byte{0x04}, c...), nil
}
}
func Decrypt(priv *PrivateKey, data []byte) ([]byte, error) {
data = data[1:]
length := len(data) - 96
curve := priv.Curve
x := new(big.Int).SetBytes(data[:32])
y := new(big.Int).SetBytes(data[32:64])
x2, y2 := curve.ScalarMult(x, y, priv.D.Bytes())
x2Buf := x2.Bytes()
y2Buf := y2.Bytes()
if n := len(x2Buf); n < 32 {
x2Buf = append(zeroByteSlice()[:32-n], x2Buf...)
}
if n := len(y2Buf); n < 32 {
y2Buf = append(zeroByteSlice()[:32-n], y2Buf...)
}
c, ok := kdf(x2Buf, y2Buf, length)
if !ok {
return nil, errors.New("Decrypt: failed to decrypt")
}
for i := 0; i < length; i++ {
c[i] ^= data[i+96]
}
tm := []byte{}
tm = append(tm, x2Buf...)
tm = append(tm, c...)
tm = append(tm, y2Buf...)
h := sm3.Sm3Sum(tm)
if bytes.Compare(h, data[64:96]) != 0 {
return c, errors.New("Decrypt: failed to decrypt")
}
return c, nil
}
type zr struct {
io.Reader
}
func (z *zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
var zeroReader = &zr{}
func getLastBit(a *big.Int) uint {
return a.Bit(0)
}
func Compress(a *PublicKey) []byte {
buf := []byte{}
yp := getLastBit(a.Y)
buf = append(buf, a.X.Bytes()...)
if n := len(a.X.Bytes()); n < 32 {
buf = append(zeroByteSlice()[:(32-n)], buf...)
}
buf = append([]byte{byte(yp)}, buf...)
return buf
}
func Decompress(a []byte) *PublicKey {
var aa, xx, xx3 sm2P256FieldElement
P256Sm2()
x := new(big.Int).SetBytes(a[1:])
curve := sm2P256
sm2P256FromBig(&xx, x)
sm2P256Square(&xx3, &xx) // x3 = x ^ 2
sm2P256Mul(&xx3, &xx3, &xx) // x3 = x ^ 2 * x
sm2P256Mul(&aa, &curve.a, &xx) // a = a * x
sm2P256Add(&xx3, &xx3, &aa)
sm2P256Add(&xx3, &xx3, &curve.b)
y2 := sm2P256ToBig(&xx3)
y := new(big.Int).ModSqrt(y2, sm2P256.P)
if getLastBit(y) != uint(a[0]) {
y.Sub(sm2P256.P, y)
}
return &PublicKey{
Curve: P256Sm2(),
X: x,
Y: y,
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。