# tkbc **Repository Path**: songjh623/tkbc ## Basic Information - **Project Name**: tkbc - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-28 - **Last Updated**: 2024-10-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Knowledge Base Completion (kbc) This code reproduces results in [Tensor Decompositions for Temporal Knowledge Base Completion](https://arxiv.org/abs/2004.04926) (ICLR 2020). ## Installation Create a conda environment with pytorch and scikit-learn : ``` conda create --name tkbc_env python=3.7 source activate tkbc_env conda install --file requirements.txt -c pytorch ``` Then install the kbc package to this environment ``` python setup.py install ``` ## Datasets To download the datasets, go to the tkbc/scripts folder and run: ``` chmod +x download_data.sh ./download_data.sh ``` Once the datasets are downloaded, add them to the package data folder by running : ``` python tkbc/process_icews.py python tkbc/process_yago.py python tkbc/process_wikidata.py # about 3 minutes. ``` This will create the files required to compute the filtered metrics. ## Reproducing results In order to reproduce the results on the smaller datasets in the paper, run the following commands ``` python tkbc/learner.py --dataset ICEWS14 --model TNTComplEx --rank 156 --emb_reg 1e-2 --time_reg 1e-2 python tkbc/learner.py --dataset ICEWS05-15 --model TNTComplEx --rank 128 --emb_reg 1e-3 --time_reg 1 python tkbc/learner.py --dataset yago15k --model TNTComplEx --rank 189 --no_time_emb --emb_reg 1e-2 --time_reg 1 ``` ## License tkbc is CC-BY-NC licensed, as found in the LICENSE file.