# DeepLabV3Plus-Pytorch **Repository Path**: splendon/DeepLabV3Plus-Pytorch ## Basic Information - **Project Name**: DeepLabV3Plus-Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-07-24 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepLabv3Plus-Pytorch DeepLabV3 and DeepLabV3+ with MobileNetv2 and ResNet backbones for Pytorch. #### Available Architectures Specify the model architecture with '--model ARCH_NAME' and set the output stride with '--output_stride OUTPUT_STRIDE'. | DeepLabV3 | DeepLabV3+ | | :---: | :---: | |deeplabv3_resnet50|deeplabv3plus_resnet50| |deeplabv3_resnet101|deeplabv3plus_resnet101| |deeplabv3_mobilenet|deeplabv3plus_mobilenet | All available pretrained models: [Dropbox](https://www.dropbox.com/sh/w3z9z8lqpi8b2w7/AAB0vkl4F5vy6HdIhmRCTKHSa?dl=0) Load the pretrained model: ```python model.load_state_dict( torch.load( CKPT_PATH )['model_state'] ) ``` #### Atrous Separable Convolution Atrous Separable Convolution is supported in this repo. We provide a simple tool ``network.convert_to_separable_conv`` to convert ``nn.Conv2d`` to ``AtrousSeparableConvolution``. **Please run main.py with '--separable_conv' if it is required**. See 'main.py' and 'network/_deeplab.py' for more details. ## Datasets * [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) * [Cityscapes](https://www.cityscapes-dataset.com/) ## Results #### Performances on Pascal VOC2012 Aug (21 classes, 513 x 513) Training: 513x513 random crop validation: 513x513 center crop | Model | Batch Size | FLOPs | train/val OS | mIoU | Checkpoint | | :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | | DeepLabV3-MobileNet | 16 | 6.0G | 16/16 | 0.701 | [Download](https://www.dropbox.com/s/uhksxwfcim3nkpo/best_deeplabv3_mobilenet_voc_os16.pth?dl=0) | | DeepLabV3-ResNet50 | 16 | 51.4G | 16/16 | 0.769 | [Download](https://www.dropbox.com/s/3eag5ojccwiexkq/best_deeplabv3_resnet50_voc_os16.pth?dl=0) | DeepLabV3-ResNet101 | 16 | 72.1G | 16/16 | 0.773 | [Download](https://www.dropbox.com/s/vtenndnsrnh4068/best_deeplabv3_resnet101_voc_os16.pth?dl=0) | | DeepLabV3Plus-MobileNet | 16 | 17.0G | 16/16 | 0.711 | [Download](https://www.dropbox.com/s/0idrhwz6opaj7q4/best_deeplabv3plus_mobilenet_voc_os16.pth?dl=0) | | DeepLabV3Plus-ResNet50 | 16 | 62.7G | 16/16 | 0.772 | [Download](https://www.dropbox.com/s/dgxyd3jkyz24voa/best_deeplabv3plus_resnet50_voc_os16.pth?dl=0) | | DeepLabV3Plus-ResNet101 | 16 | 83.4G | 16/16 | 0.783 | [Download](https://www.dropbox.com/s/bm3hxe7wmakaqc5/best_deeplabv3plus_resnet101_voc_os16.pth?dl=0) | #### Performances on Cityscapes (19 classes, 1024 x 2048) Training: 768x768 random crop validation: 1024x2048 | Model | Batch Size | FLOPs | train/val OS | mIoU | Checkpoint | | :-------- | :-------------: | :----: | :-----------: | :--------: | :--------: | | DeepLabV3Plus-MobileNet | 16 | 135G | 16/16 | 0.721 | [Download](https://www.dropbox.com/s/753ojyvsh3vdjol/best_deeplabv3plus_mobilenet_cityscapes_os16.pth?dl=0) #### Segmentation Results on Pascal VOC2012 (DeepLabv3Plus-MobileNet)