# DBNet.pytorch **Repository Path**: star_dad/DBNet.pytorch ## Basic Information - **Project Name**: DBNet.pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-12-23 - **Last Updated**: 2020-12-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Real-time Scene Text Detection with Differentiable Binarization **note**: some code is inherited from [MhLiao/DB](https://github.com/MhLiao/DB) [中文解读](https://zhuanlan.zhihu.com/p/94677957) ![network](imgs/paper/db.jpg) ## update 2020-06-07: 添加灰度图训练,训练灰度图时需要在配置里移除`dataset.args.transforms.Normalize` ## Install Using Conda ``` conda env create -f environment.yml git clone https://github.com/WenmuZhou/DBNet.pytorch.git cd DBNet.pytorch/ ``` or ## Install Manually ```bash conda create -n dbnet python=3.6 conda activate dbnet conda install ipython pip # python dependencies pip install -r requirement.txt # install PyTorch with cuda-10.1 # Note that you can change the cudatoolkit version to the version you want. conda install pytorch torchvision cudatoolkit=10.1 -c pytorch # clone repo git clone https://github.com/WenmuZhou/DBNet.pytorch.git cd DBNet.pytorch/ ``` ## Requirements * pytorch 1.4+ * torchvision 0.5+ * gcc 4.9+ ## Download TBD ## Data Preparation Training data: prepare a text `train.txt` in the following format, use '\t' as a separator ``` ./datasets/train/img/001.jpg ./datasets/train/gt/001.txt ``` Validation data: prepare a text `test.txt` in the following format, use '\t' as a separator ``` ./datasets/test/img/001.jpg ./datasets/test/gt/001.txt ``` - Store images in the `img` folder - Store groundtruth in the `gt` folder The groundtruth can be `.txt` files, with the following format: ``` x1, y1, x2, y2, x3, y3, x4, y4, annotation ``` ## Train 1. config the `dataset['train']['dataset'['data_path']'`,`dataset['validate']['dataset'['data_path']`in [config/icdar2015_resnet18_fpn_DBhead_polyLR.yaml](cconfig/icdar2015_resnet18_fpn_DBhead_polyLR.yaml) * . single gpu train ```bash bash singlel_gpu_train.sh ``` * . Multi-gpu training ```bash bash multi_gpu_train.sh ``` ## Test [eval.py](tools/eval.py) is used to test model on test dataset 1. config `model_path` in [eval.sh](eval.sh) 2. use following script to test ```bash bash eval.sh ``` ## Predict [predict.py](tools/predict.py) Can be used to inference on all images in a folder 1. config `model_path`,`input_folder`,`output_folder` in [predict.sh](predict.sh) 2. use following script to predict ``` bash predict.sh ``` You can change the `model_path` in the `predict.sh` file to your model location. tips: if result is not good, you can change `thre` in [predict.sh](predict.sh) The project is still under development.

Performance

### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4) only train on ICDAR2015 dataset | Method | image size (short size) |learning rate | Precision (%) | Recall (%) | F-measure (%) | FPS | |:--------------------------:|:-------:|:--------:|:--------:|:------------:|:---------------:|:-----:| | SynthText-Defrom-ResNet-18(paper) | 736 |0.007 | 86.8 | 78.4 | 82.3 | 48 | | ImageNet-resnet18-FPN-DBHead |736 |1e-3| 87.03 | 75.06 | 80.6 | 43 | | ImageNet-Defrom-Resnet18-FPN-DBHead |736 |1e-3| 88.61 | 73.84 | 80.56 | 36 | | ImageNet-resnet50-FPN-DBHead |736 |1e-3| 88.06 | 77.14 | 82.24 | 27 | | ImageNet-resnest50-FPN-DBHead |736 |1e-3| 89.56 | 77.38 | 83.03 | 27 | ### examples TBD ### todo - [x] mutil gpu training ### reference 1. https://arxiv.org/pdf/1911.08947.pdf 2. https://github.com/WenmuZhou/PANet.pytorch 3. https://github.com/MhLiao/DB **If this repository helps you,please star it. Thanks.**