# Stock-Prediction-Models **Repository Path**: studvc/Stock-Prediction-Models ## Basic Information - **Project Name**: Stock-Prediction-Models - **Description**: Gathers machine learning and deep learning models for Stock forecasting including trading bots and simulations - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
--- **Stock-Prediction-Models**, Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations. ## Table of contents * [Models](https://github.com/huseinzol05/Stock-Prediction-Models#models) * [Agents](https://github.com/huseinzol05/Stock-Prediction-Models#agents) * [Realtime Agent](realtime-agent) * [Data Explorations](https://github.com/huseinzol05/Stock-Prediction-Models#data-explorations) * [Simulations](https://github.com/huseinzol05/Stock-Prediction-Models#simulations) * [Tensorflow-js](https://github.com/huseinzol05/Stock-Prediction-Models#tensorflow-js) * [Misc](https://github.com/huseinzol05/Stock-Prediction-Models#misc) * [Results](https://github.com/huseinzol05/Stock-Prediction-Models#results) * [Results Agent](https://github.com/huseinzol05/Stock-Prediction-Models#results-agent) * [Results signal prediction](https://github.com/huseinzol05/Stock-Prediction-Models#results-signal-prediction) * [Results analysis](https://github.com/huseinzol05/Stock-Prediction-Models#results-analysis) * [Results simulation](https://github.com/huseinzol05/Stock-Prediction-Models#results-simulation) ## Contents ### Models #### [Deep-learning models](deep-learning) 1. LSTM 2. LSTM Bidirectional 3. LSTM 2-Path 4. GRU 5. GRU Bidirectional 6. GRU 2-Path 7. Vanilla 8. Vanilla Bidirectional 9. Vanilla 2-Path 10. LSTM Seq2seq 11. LSTM Bidirectional Seq2seq 12. LSTM Seq2seq VAE 13. GRU Seq2seq 14. GRU Bidirectional Seq2seq 15. GRU Seq2seq VAE 16. Attention-is-all-you-Need 17. CNN-Seq2seq 18. Dilated-CNN-Seq2seq **Bonus** 1. How to use one of the model to forecast `t + N`, [how-to-forecast.ipynb](deep-learning/how-to-forecast.ipynb) 2. Consensus, how to use sentiment data to forecast `t + N`, [sentiment-consensus.ipynb](deep-learning/sentiment-consensus.ipynb) #### [Stacking models](stacking) 1. Deep Feed-forward Auto-Encoder Neural Network to reduce dimension + Deep Recurrent Neural Network + ARIMA + Extreme Boosting Gradient Regressor 2. Adaboost + Bagging + Extra Trees + Gradient Boosting + Random Forest + XGB ### [Agents](agent) 1. Turtle-trading agent 2. Moving-average agent 3. Signal rolling agent 4. Policy-gradient agent 5. Q-learning agent 6. Evolution-strategy agent 7. Double Q-learning agent 8. Recurrent Q-learning agent 9. Double Recurrent Q-learning agent 10. Duel Q-learning agent 11. Double Duel Q-learning agent 12. Duel Recurrent Q-learning agent 13. Double Duel Recurrent Q-learning agent 14. Actor-critic agent 15. Actor-critic Duel agent 16. Actor-critic Recurrent agent 17. Actor-critic Duel Recurrent agent 18. Curiosity Q-learning agent 19. Recurrent Curiosity Q-learning agent 20. Duel Curiosity Q-learning agent 21. Neuro-evolution agent 22. Neuro-evolution with Novelty search agent 23. ABCD strategy agent ### [Data Explorations](misc) 1. stock market study on TESLA stock, [tesla-study.ipynb](misc/tesla-study.ipynb) 2. Outliers study using K-means, SVM, and Gaussian on TESLA stock, [outliers.ipynb](misc/outliers.ipynb) 3. Overbought-Oversold study on TESLA stock, [overbought-oversold.ipynb](misc/overbought-oversold.ipynb) 4. Which stock you need to buy? [which-stock.ipynb](misc/which-stock.ipynb) ### [Simulations](simulation) 1. Simple Monte Carlo, [monte-carlo-drift.ipynb](simulation/monte-carlo-drift.ipynb) 2. Dynamic volatility Monte Carlo, [monte-carlo-dynamic-volatility.ipynb](simulation/monte-carlo-dynamic-volatility.ipynb) 3. Drift Monte Carlo, [monte-carlo-drift.ipynb](simulation/monte-carlo-drift.ipynb) 4. Multivariate Drift Monte Carlo BTC/USDT with Bitcurate sentiment, [multivariate-drift-monte-carlo.ipynb](simulation/multivariate-drift-monte-carlo.ipynb) 5. Portfolio optimization, [portfolio-optimization.ipynb](simulation/portfolio-optimization.ipynb), inspired from https://pythonforfinance.net/2017/01/21/investment-portfolio-optimisation-with-python/ ### [Tensorflow-js](stock-forecasting-js) I code [LSTM Recurrent Neural Network](deep-learning/1.lstm.ipynb) and [Simple signal rolling agent](agent/simple-agent.ipynb) inside Tensorflow JS, you can try it here, [huseinhouse.com/stock-forecasting-js](https://huseinhouse.com/stock-forecasting-js/), you can download any historical CSV and upload dynamically. ### [Misc](misc) 1. fashion trending prediction with cross-validation, [fashion-forecasting.ipynb](misc/fashion-forecasting.ipynb) 2. Bitcoin analysis with LSTM prediction, [bitcoin-analysis-lstm.ipynb](misc/bitcoin-analysis-lstm.ipynb) 3. Kijang Emas Bank Negara, [kijang-emas-bank-negara.ipynb](misc/kijang-emas-bank-negara.ipynb) ## Results ### Results Agent **This agent only able to buy or sell 1 unit per transaction.** 1. Turtle-trading agent, [turtle-agent.ipynb](agent/1.turtle-agent.ipynb)