# EfficientSAM **Repository Path**: summersoda/EfficientSAM ## Basic Information - **Project Name**: EfficientSAM - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-08 - **Last Updated**: 2023-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EfficientSAM EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything ## News [Dec.6 2023] EfficientSAM demo is available on the [HuggingFace Space](https://huggingface.co/spaces/yunyangx/EfficientSAM) (huge thanks to all the HF team for their support). [Dec.5 2023] We release the torchscript version of EfficientSAM and share a colab. ## Online Demo & Examples Online demo and examples can be found in the [project page](https://yformer.github.io/efficient-sam/). ## EfficientSAM Instance Segmentation Examples | | | :-------------------------:|:-------------------------: Point-prompt | ![point-prompt](figs/examples/demo_point.png) Box-prompt | ![box-prompt](figs/examples/demo_box.png) Segment everything |![segment everything](figs/examples/demo_everything.png) Saliency | ![Saliency](figs/examples/demo_saliency.png) ## Model Models for GPU/CPU are available at the file folder of [HuggingFace Space](https://huggingface.co/spaces/yunyangx/EfficientSAM/). | EfficientSAM-S | EfficientSAM-Ti | |------------------------------|------------------------------| | [Download](https://www.dropbox.com/scl/fi/ziif8xudwbyyphb4tohza/efficientsam_s_gpu.jit?rlkey=8aflq9kf0bfujz5ex4lxuoq56&dl=0) |[Download](https://www.dropbox.com/scl/fi/lup5s4gthmlv6qf3f5zz3/efficientsam_ti_gpu.jit?rlkey=pap1xktxw50qiaey17no16bqz&dl=0)| You can directly use EfficientSAM, ``` import torch efficientsam = torch.jit.load(efficientsam_s_gpu.jit) ``` ## Colab The colab is shared [here](https://colab.research.google.com/drive/150dvh_lwbliC3020fWO9qASgy-so6sUZ?usp=sharing) ## Acknowledgement + [SAM](https://github.com/facebookresearch/segment-anything) + [MobileSAM](https://github.com/ChaoningZhang/MobileSAM) + [FastSAM](https://github.com/CASIA-IVA-Lab/FastSAM) + [U-2-Net](https://github.com/xuebinqin/U-2-Net) If you're using EfficientSAM in your research or applications, please cite using this BibTeX: ```bibtex @article{xiong2023efficientsam, title={EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything}, author={Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiaoliang Dai, Dilin Wang, Fei Sun, Forrest Iandola, Raghuraman Krishnamoorthi, Vikas Chandra}, journal={arXiv:2312.00863}, year={2023} } ```