# model-wrapper **Repository Path**: summry/model-wrapper ## Basic Information - **Project Name**: model-wrapper - **Description**: Model wrapper for Pytorch - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-18 - **Last Updated**: 2025-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Usage Sample '''''''''''' .. code:: python from model_wrapper import SplitClassifyModelWrapper classes = ['class1', 'class2', 'class3'...] X = [[...], [...],] y = [0, 0, 1, 2, 1...] model = ... wrapper = SplitClassifyModelWrapper(model, classes=classes) wrapper.train(X, y, val_size=0.2) X_test = [[...], [...],] y_test = [0, 1, 1, 2, 1...] result = wrapper.evaluate(X_test, y_test) # 0.953125 result = wrapper.predict(X_test) # [0, 1] result = wrapper.predict_classes(X_test) # ['class1', 'class2'] result = wrapper.predict_proba(X_test) # ([0, 1], array([0.99439645, 0.99190724], dtype=float32)) result = wrapper.predict_classes_proba(X_test) # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))