# rag-from-scratch **Repository Path**: summry/rag-from-scratch ## Basic Information - **Project Name**: rag-from-scratch - **Description**: lang-chain https://github.com/langchain-ai/rag-from-scratch.git - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-09 - **Last Updated**: 2025-01-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: langchain ## README # RAG From Scratch LLMs are trained on a large but fixed corpus of data, limiting their ability to reason about private or recent information. Fine-tuning is one way to mitigate this, but is often [not well-suited for facutal recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise). Retrieval augmented generation (RAG) has emerged as a popular and powerful mechanism to expand an LLM's knowledge base, using documents retrieved from an external data source to ground the LLM generation via in-context learning. These notebooks accompany a [video playlist](https://youtube.com/playlist?list=PLfaIDFEXuae2LXbO1_PKyVJiQ23ZztA0x&feature=shared) that builds up an understanding of RAG from scratch, starting with the basics of indexing, retrieval, and generation. ![rag_detail_v2](https://github.com/langchain-ai/rag-from-scratch/assets/122662504/54a2d76c-b07e-49e7-b4ce-fc45667360a1)