同步操作将从 Gitee 极速下载/pyecharts 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
作为 pyecharts 的作者,很高兴看到 pyecharts 最近这么受欢迎,一度冲上了 Python daily trending 和 weekly trending 前三名。大家对这个项目的反馈也都不错,在这里我真诚的感谢大家对这个项目的支持。
随着使用项目的人越来越多,已经收到了不少希望推出一份英文文档的请求,但是大家提新需求的速度已经远远快于我的开发速度......我还要测试以及解决提出的 issue,实在是没什么时间(加上我英语水平不高这点我是不会告诉你的)。
在这里,我诚恳地向各位对这个项目感兴趣,想参与到项目中来的开发者发出邀请,希望你们可以参与到英文文档的编写中来,成为这个项目的贡献者,一起推动这个项目的发展。英文文档在这里 doc_en_US.md ,我已经写了一些,但是还差挺多的。别犹豫了,来吧!
想参与到英文文档开发中来的开发者,请联系我邮箱,chenjiandongx@qq.com,或者加入下面这个微信群,我们可以来具体讨论。不然直接 fork 一份,编写后提交 PR 也行,我看到了会及时 merge 的。
接下来我就暂时不更新版本了,因为作者要出去玩耍几天了,不然感觉这样下去的话我这个暑假就没了!!!也写了好多天代码了,是该出去玩一下了!!!
pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。
Echarts 是百度开源的一个数据可视化 JS 库。看了官方的介绍文档,觉得很不错,就想看看有没有人实现了 Python 库可以直接调用的。Github 上找到了一个 echarts-python 不过这个项目已经很久没更新且也没什么介绍文档。借鉴了该项目,就自己动手实现一个,于是就有了 pyecharts。API 接口是从另外一个图表库 pygal 中模仿的。
pyecharts 兼容 Python2 和 Python3。当前版本为 0.1.9.1,关于版本信息请查看 changelog.md,一定要看一下阿!
温馨提醒,要使用文档中的所有功能,请及时更新到最新版本
pip install pyecharts
首先开始来绘制你的第一个图表
from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()
Tip: 可以按右边的下载按钮将图片下载到本地
add()
show_config()
render()
默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,请应用下面的语句,保证没有编码问题:
#!/usr/bin/python
#coding=utf-8
from __future__ import unicode_literals
前两句告知你的编辑器你用 UTF-8 (PEP-0263). 最后一句告知 Python 所有字符是 UTF-8 (unicode literals)
基本上所有的图表类型都是这样绘制的:
chart_name = Type()
初始化具体类型图表。add()
添加数据及配置项。render()
生成 .html 文件。add()
数据一般为两个列表(长度一致)。
如果你的数据是字典或者是带元组的字典。可利用 cast()
方法转换。
@staticmethod
cast(seq)
``` 转换数据序列,将带字典和元组类型的序列转换为 k_lst,v_lst 两个列表 ```
如果使用的是 Numpy 或者 Pandas,直接将数据放入 add()
方法也可能会出现问题,因为 add()
方法接受的是两个 list 列表。最后所有的配置项都是要经过 JSON 序列化的,像 int64 这种类型的数据在这个过程是会报错的。
在这里提供了 pdcast(pddata)
和 npcast(npdata)
两个方法,用于这两个库数据类型的处理。
pdcast(),接受的参数可以为 Series 或者 DataFrame 类型。
@staticmethod
pdcast(pddata)
``` 用于处理 Pandas 中的 Series 和 DataFrame 类型,返回 value_lst, index_list 两个列表 ```
npcast(),接受的参数为 Numpy.array 类型。
@staticmethod
npcast(npdata)
``` 用于处理 Numpy 中的 ndarray 类型,返回一个确保类型正确的列表。如果多个维度的话返回嵌套列表。```
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
比如这样
还有这样
这里只是举几个例子。如需使用 Jupyter Notebook 来展示图表,只需要调用 render_notebook()
即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示(除了 3D 图),与浏览器一致的交互体验,这下展示报告连 PPT 都省了!!
图表类初始化所接受的参数(所有类型的图表都一样)。
通用配置项均在 add()
中设置
xyAxis:直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
Tip: is_random 可随机打乱图例颜色列表,算是切换风格?建议试一试!
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)
柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小。
Bar.add() 方法签名
add(name, x_axis, y_axis, is_stack=False, **kwargs)
from pyecharts import Bar
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图数据堆叠示例")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True)
bar.render()
Tip: 全局配置项要在最后一个 add()
上设置,否侧设置会被冲刷掉。
from pyecharts import Bar
bar = Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()
from pyecharts import Bar
bar = Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()
dataZoom 效果,'slider' 类型
import random
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - slider 示例")
bar.add("", attr, v1, is_label_show=True, is_datazoom_show=True)
bar.show_config()
bar.render()
'inside' 类型
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - inside 示例")
bar.add("", attr, v1, is_datazoom_show=True, datazoom_type='inside', datazoom_range=[10, 25])
bar.show_config()
bar.render()
Tip: datazoom 适合所有平面直角坐标系图形,也就是(Line、Bar、Scatter、EffectScatter、Kline)
Tip: 可以通过 label_color 来设置柱状的颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
Bar3D.add() 方法签名
add(name, x_axis, y_axis, data, grid3D_opacity=1, grid3D_shading='color', **kwargs)
from pyecharts import Bar3D
bar3d = Bar3D("3D 柱状图示例", width=1200, height=600)
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[0, 0, 5], [0, 1, 1], [0, 2, 0], [0, 3, 0], [0, 4, 0], [0, 5, 0], [0, 6, 0], [0, 7, 0],
[0, 8, 0],[0, 9, 0], [0, 10, 0], [0, 11, 2], [0, 12, 4], [0, 13, 1], [0, 14, 1], [0, 15, 3],
[0, 16, 4], [0, 17, 6], [0, 18, 4], [0, 19, 4], [0, 20, 3], [0, 21, 3], [0, 22, 2], [0, 23, 5],
[1, 0, 7], [1, 1, 0], [1, 2, 0], [1, 3, 0], [1, 4, 0], [1, 5, 0], [1, 6, 0], [1, 7, 0], [1, 8, 0],
[1, 9, 0], [1, 10, 5], [1, 11, 2], [1, 12, 2], [1, 13, 6], [1, 14, 9], [1, 15, 11], [1, 16, 6], [1, 17, 7],
[1, 18, 8], [1, 19, 12], [1, 20, 5], [1, 21, 5], [1, 22, 7], [1, 23, 2], [2, 0, 1], [2, 1, 1],
[2, 2, 0], [2, 3, 0], [2, 4, 0], [2, 5, 0], [2, 6, 0], [2, 7, 0], [2, 8, 0], [2, 9, 0], [2, 10, 3],
[2, 11, 2], [2, 12, 1], [2, 13, 9], [2, 14, 8], [2, 15, 10], [2, 16, 6], [2, 17, 5], [2, 18, 5],
[2, 19, 5], [2, 20, 7], [2, 21, 4], [2, 22, 2], [2, 23, 4], [3, 0, 7], [3, 1, 3], [3, 2, 0], [3, 3, 0],
[3, 4, 0], [3, 5, 0], [3, 6, 0], [3, 7, 0], [3, 8, 1], [3, 9, 0], [3, 10, 5], [3, 11, 4], [3, 12, 7],
[3, 13, 14], [3, 14, 13], [3, 15, 12], [3, 16, 9], [3, 17, 5], [3, 18, 5], [3, 19, 10], [3, 20, 6],
[3, 21, 4], [3, 22, 4], [3, 23, 1], [4, 0, 1], [4, 1, 3], [4, 2, 0], [4, 3, 0], [4, 4, 0], [4, 5, 1],
[4, 6, 0], [4, 7, 0], [4, 8, 0], [4, 9, 2], [4, 10, 4], [4, 11, 4], [4, 12, 2], [4, 13, 4], [4, 14, 4],
[4, 15, 14], [4, 16, 12], [4, 17, 1], [4, 18, 8], [4, 19, 5], [4, 20, 3], [4, 21, 7], [4, 22, 3],
[4, 23, 0], [5, 0, 2], [5, 1, 1], [5, 2, 0], [5, 3, 3], [5, 4, 0], [5, 5, 0], [5, 6, 0], [5, 7, 0],
[5, 8, 2], [5, 9, 0], [5, 10, 4], [5, 11, 1], [5, 12, 5], [5, 13, 10], [5, 14, 5], [5, 15, 7], [5, 16, 11],
[5, 17, 6], [5, 18, 0], [5, 19, 5], [5, 20, 3], [5, 21, 4], [5, 22, 2], [5, 23, 0], [6, 0, 1], [6, 1, 0],
[6, 2, 0], [6, 3, 0], [6, 4, 0], [6, 5, 0], [6, 6, 0], [6, 7, 0], [6, 8, 0], [6, 9, 0], [6, 10, 1],
[6, 11, 0], [6, 12, 2], [6, 13, 1], [6, 14, 3], [6, 15, 4], [6, 16, 0], [6, 17, 0], [6, 18, 0], [6, 19, 0],
[6, 20, 1], [6, 21, 2], [6, 22, 2], [6, 23, 6]]
range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
bar3d.add("", x_axis, y_aixs, [[d[1], d[0], d[2]] for d in data], is_visualmap=True,
visual_range=[0, 20], visual_range_color=range_color, grid3D_width=200, grid3D_depth=80)
bar3d.show_config()
bar3d.render()
设置 grid3D_shading
可以让柱状更真实
bar3d = Bar3D("3D 柱状图示例", width=1200, height=600)
bar3d.add("", x_axis, y_aixs, [[d[1], d[0], d[2]] for d in data], is_visualmap=True,
visual_range=[0, 20], visual_range_color=range_color, grid3D_width=200, grid3D_depth=80,
grid3D_shading='lambert')
bar3d.show_config()
bar3d.render()
设置 is_grid3D_rotate
启动自动旋转功能
bar3d = Bar3D("3D 柱状图示例", width=1200, height=600)
bar3d.add("", x_axis, y_aixs, [[d[1], d[0], d[2]] for d in data], is_visualmap=True,
visual_range=[0, 20], visual_range_color=range_color, grid3D_width=200, grid3D_depth=80,
is_grid3D_rotate=True)
bar3d.show_config()
bar3d.render()
设置 grid3D_rotate_speed
调节旋转速度
bar3d = Bar3D("3D 柱状图示例", width=1200, height=600)
bar3d.add("", x_axis, y_aixs, [[d[1], d[0], d[2]] for d in data], is_visualmap=True,
visual_range=[0, 20], visual_range_color=range_color, grid3D_width=200, grid3D_depth=80,
is_grid3D_rotate=True, grid3D_rotate_speed=180)
bar3d.show_config()
bar3d.render()
Tip: 关于 gird3D 部分的设置,请参照通用配置项中的介绍 通用配置项
利用动画特效可以将某些想要突出的数据进行视觉突出。
EffectScatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
from pyecharts import EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es = EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()
Funnel.add() 方法签名
add(self, name, attr, value, **kwargs)
from pyecharts import Funnel
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()
funnel = Funnel("漏斗图示例", width=600, height=400, title_pos='center')
funnel.add("商品", attr, value, is_label_show=True, label_pos="outside", legend_orient='vertical',
legend_pos='left')
funnel.show_config()
funnel.render()
Gauge.add() 方法签名
add(name, attr, value, scale_range=None, angle_range=None, **kwargs)
from pyecharts import Gauge
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 166.66, angle_range=[180, 0], scale_range=[0, 200], is_legend_show=False)
gauge.show_config()
gauge.render()
地理坐标系组件用于地图的绘制,支持在地理坐标系上绘制散点图,线集。
Geo.add() 方法签名
add(name, attr, value, type="scatter", maptype='china', symbol_size=12, border_color="#111",
geo_normal_color="#323c48", geo_emphasis_color="#2a333d", **kwargs)
Scatter 类型
from pyecharts import Geo
data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff", symbol_size=15, is_visualmap=True)
geo.show_config()
geo.render()
Tip: 请配合 通用配置项 中的 Visualmap 使用
HeatMap 类型
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600,
background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="heatmap", is_visualmap=True, visual_range=[0, 300], visual_text_color='#fff')
geo.show_config()
geo.render()
EffectScatter 类型
from pyecharts import Geo
data = [("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()
用于展现节点以及节点之间的关系数据。
Graph.add() 方法签名
add(name, nodes, links, categories=None, is_focusnode=True, is_roam=True, is_rotatelabel=False,
layout="force", edge_length=50, gravity=0.2, repulsion=50, **kwargs)
from pyecharts import Graph
nodes = [{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 20},
{"name": "结点3", "symbolSize": 30},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 50},
{"name": "结点6", "symbolSize": 40},
{"name": "结点7", "symbolSize": 30},
{"name": "结点8", "symbolSize": 20}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-力引导布局示例")
graph.add("", nodes, links, repulsion=8000)
graph.show_config()
graph.render()
graph = Graph("关系图-环形布局示例")
graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
graph.show_config()
graph.render()
from pyecharts import Graph
import json
with open("..\json\weibo.json", "r", encoding="utf-8") as f:
j = json.load(f)
nodes, links, categories, cont, mid, userl = j
graph = Graph("微博转发关系图", width=1200, height=600)
graph.add("", nodes, links, categories, label_pos="right", repulsion=50, is_legend_show=False,
line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()
Tip: 可配置 lineStyle 参数
热力图主要通过颜色去表现数值的大小,必须要配合 visualMap 组件使用。直角坐标系上必须要使用两个类目轴。
HeatMap.add() 方法签名
add(name, x_axis, y_axis, data, **kwargs)
import random
from pyecharts import HeatMap
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heatmap = HeatMap()
heatmap.add("热力图直角坐标系", x_axis, y_aixs, data, is_visualmap=True,
visual_text_color="#000", visual_orient='horizontal')
heatmap.show_config()
heatmap.render()
Tip: 热力图必须配合 通用配置项 中的 VisualMap 使用才有效果。
红涨蓝跌
Kline.add() 方法签名
add(name, x_axis, y_axis, **kwargs)
from pyecharts import Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1)
kline.show_config()
kline.render()
Kline + dataZoom
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, mark_point=["max"], is_datazoom_show=True)
kline.show_config()
kline.render()
dataZoom 效果加在纵坐标轴上
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, mark_point=["max"],
is_datazoom_show=True, datazoom_orient='vertical')
kline.show_config()
kline.render()
折线图是用折线将各个数据点标志连接起来的图表,用于展现数据的变化趋势。
Line.add() 方法签名
add(name, x_axis, y_axis, is_symbol_show=True, is_smooth=False, is_stack=False,
is_step=False, is_fill=False, **kwargs)
from pyecharts import Line
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 10, 100]
v2 = [55, 60, 16, 20, 15, 80]
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()
标记点其他配置
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average", "max", "min"],
mark_point_symbol='diamond', mark_point_textcolor='#40ff27')
line.add("商家B", attr, v2, mark_point=["average", "max", "min"],
mark_point_symbol='arrow', mark_point_symbolsize=40)
line.show_config()
line.render()
line = Line("折线图-数据堆叠示例")
line.add("商家A", attr, v1, is_stack=True, is_label_show=True)
line.add("商家B", attr, v2, is_stack=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()
Tip: 可配置 lineStyle 参数 Tip: 可以通过 label_color 来设置线条颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
Line3D.add() 方法签名
add(name, data, grid3D_opacity=1, **kwargs)
画个弹簧
from pyecharts import Line3D
import math
_data = []
for t in range(0, 25000):
_t = t / 1000
x = (1 + 0.25 * math.cos(75 * _t)) * math.cos(_t)
y = (1 + 0.25 * math.cos(75 * _t)) * math.sin(_t)
z = _t + 2.0 * math.sin(75 * _t)
_data.append([x, y, z])
range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
line3d = Line3D("3D 折线图示例", width=1200, height=600)
line3d.add("", _data, is_visualmap=True, visual_range_color=range_color, visual_range=[0, 30],
grid3D_rotate_sensitivity=5)
line3d.render()
旋转弹簧
from pyecharts import Line3D
import math
_data = []
for t in range(0, 25000):
_t = t / 1000
x = (1 + 0.25 * math.cos(75 * _t)) * math.cos(_t)
y = (1 + 0.25 * math.cos(75 * _t)) * math.sin(_t)
z = _t + 2.0 * math.sin(75 * _t)
_data.append([x, y, z])
range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
line3d = Line3D("3D 折线图示例", width=1200, height=600)
line3d.add("", _data, is_visualmap=True, visual_range_color=range_color, visual_range=[0, 30],
is_grid3D_rotate=True, grid3D_rotate_speed=180)
line3d.render()
Tip: 关于 gird3D 部分的设置,请参照通用配置项中的介绍 通用配置项
主要用来突出数据的百分比。
Liquid.add() 方法签名
add(name, data, shape='circle', liquid_color=None, is_liquid_animation=True,
is_liquid_outline_show=True, **kwargs)
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()
地图主要用于地理区域数据的可视化。
Map.add() 方法签名
add(name, attr, value, is_roam=True, maptype='china', **kwargs)
from pyecharts import Map
value = [155, 10, 66, 78]
attr = ["福建", "山东", "北京", "上海"]
map = Map("全国地图示例", width=1200, height=600)
map.add("", attr, value, maptype='china')
map.show_config()
map.render()
from pyecharts import Map
value = [155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr = ["福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"]
map = Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add("", attr, value, maptype='china', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
Tip: 请配合 通用配置项 中的 Visualmap 使用
from pyecharts import Map
value = [20, 190, 253, 77, 65]
attr = ['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map = Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
因为地图涉及范围太广,项目不可能涵盖所有的地图,不过不用担心。Echarts 官方提供了自己定制地图的功能 echart-map,根据自己所需制定相应的地图,下载成 JS 文件格式。
打开安装目录下的 pyecharts/temple.py 文件,在 _temple 变量下对应的增加类似一行
<script type="text/javascript " src="http://echarts.baidu.com/gallery/vendors/echarts/map/js/china.js"></script>
而对应的 Jupyter Notebook 下的就在 _mapindex 变量下新增类似一行
"北京": "beijing: '//oog4yfyu0.bkt.clouddn.com/beijing'"
然后就可以在项目中使用自定义的地图了!Js 的引入方式由自己决定,能被项目所找到就行!
平行坐标系是一种常用的可视化高维数据的图表。
Parallel.add() 方法签名
add(name, data, **kwargs)
Parallel.config() 方法签名
config(schema=None, c_schema=None)
from pyecharts import Parallel
schema = ["data", "AQI", "PM2.5", "PM10", "CO", "NO2"]
data = [
[1, 91, 45, 125, 0.82, 34],
[2, 65, 27, 78, 0.86, 45,],
[3, 83, 60, 84, 1.09, 73],
[4, 109, 81, 121, 1.28, 68],
[5, 106, 77, 114, 1.07, 55],
[6, 109, 81, 121, 1.28, 68],
[7, 106, 77, 114, 1.07, 55],
[8, 89, 65, 78, 0.86, 51, 26],
[9, 53, 33, 47, 0.64, 50, 17],
[10, 80, 55, 80, 1.01, 75, 24],
[11, 117, 81, 124, 1.03, 45]
]
parallel = Parallel("平行坐标系-默认指示器")
parallel.config(schema)
parallel.add("parallel", data, is_random=True)
parallel.show_config()
parallel.render()
from pyecharts import Parallel
c_schema = [
{"dim": 0, "name": "data"},
{"dim": 1, "name": "AQI"},
{"dim": 2, "name": "PM2.5"},
{"dim": 3, "name": "PM10"},
{"dim": 4, "name": "CO"},
{"dim": 5, "name": "NO2"},
{"dim": 6, "name": "CO2"},
{"dim": 7, "name": "等级",
"type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}
]
data = [
[1, 91, 45, 125, 0.82, 34, 23, "良"],
[2, 65, 27, 78, 0.86, 45, 29, "良"],
[3, 83, 60, 84, 1.09, 73, 27, "良"],
[4, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[5, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[6, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[7, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[8, 89, 65, 78, 0.86, 51, 26, "良"],
[9, 53, 33, 47, 0.64, 50, 17, "良"],
[10, 80, 55, 80, 1.01, 75, 24, "良"],
[11, 117, 81, 124, 1.03, 45, 24, "轻度污染"],
[12, 99, 71, 142, 1.1, 62, 42, "良"],
[13, 95, 69, 130, 1.28, 74, 50, "良"],
[14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]
]
parallel = Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()
Tip: 可配置 lineStyle 参数
饼图主要用于表现不同类目的数据在总和中的占比。每个的弧度表示数据数量的比例。
Pie.add() 方法签名
add(name, attr, value, radius=None, center=None, rosetype=None, **kwargs)
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图-圆环图示例", title_pos='center')
pie.add("", attr, v1, radius=[40, 75], label_text_color=None, is_label_show=True,
legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
v2 = [19, 21, 32, 20, 20, 33]
pie = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area',
is_legend_show=False, is_label_show=True)
pie.show_config()
pie.render()
可以用于散点图和折线图。
Polar.add() 方法签名
add(name, data, angle_data=None, radius_data=None, type='line', symbol_size=4, start_angle=90,
rotate_step=0, boundary_gap=True, clockwise=True, **kwargs)
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(101)]
polar = Polar("极坐标系-散点图示例")
polar.add("", data, boundary_gap=False, type='scatter', is_splitline_show=False,
area_color=None, is_axisline_show=True)
polar.show_config()
polar.render()
Tip: 可配置 lineStyle 参数
from pyecharts import Polar
import random
data_1 = [(10, random.randint(1, 100)) for i in range(300)]
data_2 = [(11, random.randint(1, 100)) for i in range(300)]
polar = Polar("极坐标系-散点图示例", width=1200, height=600)
polar.add("", data_1, type='scatter')
polar.add("", data_2, type='scatter')
polar.show_config()
polar.render()
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(10)]
polar = Polar("极坐标系-动态散点图示例", width=1200, height=600)
polar.add("", data, type='effectScatter', effect_scale=10, effect_period=5)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True)
polar.show_config()
polar.render()
雷达图主要用于表现多变量的数据。
Radar.add() 方法签名
add(name, value, item_color=None, **kwargs)
Radar.config() 方法签名
config(schema=None, c_schema=None, shape="", rader_text_color="#000", **kwargs):
from pyecharts import Radar
schema = [
("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False, legend_selectedmode='signle')
radar.show_config()
radar.render()
Tip: 可配置 lineStyle 参数
value_bj = [
[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2],
[56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4],
[42, 24, 44, 0.76, 40, 16, 5], [82, 58, 90, 1.77, 68, 33, 6],
[74, 49, 77, 1.46, 48, 27, 7], [78, 55, 80, 1.29, 59, 29, 8],
[267, 216, 280, 4.8, 108, 64, 9], [185, 127, 216, 2.52, 61, 27, 10],
[39, 19, 38, 0.57, 31, 15, 11], [41, 11, 40, 0.43, 21, 7, 12],
[64, 38, 74, 1.04, 46, 22, 13], [108, 79, 120, 1.7, 75, 41, 14],
[108, 63, 116, 1.48, 44, 26, 15], [33, 6, 29, 0.34, 13, 5, 16],
[94, 66, 110, 1.54, 62, 31, 17], [186, 142, 192, 3.88, 93, 79, 18],
[57, 31, 54, 0.96, 32, 14, 19], [22, 8, 17, 0.48, 23, 10, 20],
[39, 15, 36, 0.61, 29, 13, 21], [94, 69, 114, 2.08, 73, 39, 22],
[99, 73, 110, 2.43, 76, 48, 23], [31, 12, 30, 0.5, 32, 16, 24],
[42, 27, 43, 1, 53, 22, 25], [154, 117, 157, 3.05, 92, 58, 26],
[234, 185, 230, 4.09, 123, 69, 27],[160, 120, 186, 2.77, 91, 50, 28],
[134, 96, 165, 2.76, 83, 41, 29], [52, 24, 60, 1.03, 50, 21, 30],
]
value_sh = [
[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2],
[83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4],
[106, 77, 114, 1.07, 55, 51, 5], [109, 81, 121, 1.28, 68, 51, 6],
[106, 77, 114, 1.07, 55, 51, 7], [89, 65, 78, 0.86, 51, 26, 8],
[53, 33, 47, 0.64, 50, 17, 9], [80, 55, 80, 1.01, 75, 24, 10],
[117, 81, 124, 1.03, 45, 24, 11], [99, 71, 142, 1.1, 62, 42, 12],
[95, 69, 130, 1.28, 74, 50, 13], [116, 87, 131, 1.47, 84, 40, 14],
[108, 80, 121, 1.3, 85, 37, 15], [134, 83, 167, 1.16, 57, 43, 16],
[79, 43, 107, 1.05, 59, 37, 17], [71, 46, 89, 0.86, 64, 25, 18],
[97, 71, 113, 1.17, 88, 31, 19], [84, 57, 91, 0.85, 55, 31, 20],
[87, 63, 101, 0.9, 56, 41, 21], [104, 77, 119, 1.09, 73, 48, 22],
[87, 62, 100, 1, 72, 28, 23], [168, 128, 172, 1.49, 97, 56, 24],
[65, 45, 51, 0.74, 39, 17, 25], [39, 24, 38, 0.61, 47, 17, 26],
[39, 24, 39, 0.59, 50, 19, 27], [93, 68, 96, 1.05, 79, 29, 28],
[188, 143, 197, 1.66, 99, 51, 29], [174, 131, 174, 1.55, 108, 50, 30],
]
c_schema= [{"name": "AQI", "max": 300, "min": 5},
{"name": "PM2.5", "max": 250, "min": 20},
{"name": "PM10", "max": 300, "min": 5},
{"name": "CO", "max": 5},
{"name": "NO2", "max": 200},
{"name": "SO2", "max": 100}]
radar = Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None, legend_selectedmode='signle')
radar.show_config()
radar.render()
Tip: symblo=None 可隐藏标记图形(小圆圈)
图例多例模式。
radar = Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()
直角坐标系上的散点图可以用来展现数据的 x,y 之间的关系,如果数据项有多个维度,可以用颜色来表现,利用 geo 组件。
Scatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
from pyecharts import Scatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [10, 20, 30, 40, 50, 60]
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()
利用 Visualmap 组件,通过颜色映射数值。
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2, is_visualmap=True)
scatter.show_config()
scatter.render()
利用 Visualmap 组件,通过图形点大小映射数值。
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2, is_visualmap=True, visual_type='size', visual_range_size=[20, 80])
scatter.show_config()
scatter.render()
Tip: 请配合 通用配置项 中的 Visualmap 使用
Scatter 还内置了画画方法
draw(path, color=None)
'''
将图片上的像素点转换为数组,如 color 为(255,255,255)时只保留非白色像素点的坐标信息
返回两个 k_lst, v_lst 两个列表刚好作为散点图的数据项
'''
首先你需要准备一张图片,如
from pyecharts import Scatter
scatter = Scatter("散点图示例")
v1, v2 = scatter.draw("../images/pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()
Scatter3D.add() 方法签名
add(name, data, grid3D_opacity=1, **kwargs)
from pyecharts import Scatter3D
import random
data = [[random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)] for _ in range(80)]
range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
scatter3D = Scatter3D("3D 散点图示例", width=1200, height=600)
scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color)
scatter3D.render()
Tip: 关于 gird3D 部分的设置,请参照通用配置项中的介绍 通用配置项
WordCloud.add() 方法签名
add(name, attr, value, shape="circle", word_gap=20, word_size_range=None, rotate_step=45)
from pyecharts import WordCloud
name = ['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications',
'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp',
'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham',
'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555,
550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud.show_config()
wordcloud.render()
Tip: 当且仅当 shape 为默认的'circle'时 rotate_step 参数才生效
用户可以自定义结合 Line/Bar/Kline, Scatter/EffectScatter 图表,将不同类型图表画在一张图上。利用第一个图表为基础,往后的数据都将会画在第一个图表上。
需使用 get_series()
和 custom()
方法
get_series()
""" 获取图表的 series 数据 """
custom(series)
''' 追加自定义图表类型 '''
先用 get_series()
获取数据,再使用 custom()
将图表结合在一起
Line + Bar
from pyecharts import Bar, Line
attr = ['A', 'B', 'C', 'D', 'E', 'F']
v1 = [10, 20, 30, 40, 50, 60]
v2 = [15, 25, 35, 45, 55, 65]
v3 = [38, 28, 58, 48, 78, 68]
bar = Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line = Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()
具体流程如下:
Tip: bar.custom(line.get_series())
这个一定要注意,利用第一个图表为基础。切记不要写成 bar.custom(bar.get_series())
不然会进入无限地自我调用的状态中,无限递归,最后可能导致死机。
Scatter + EffectScatter
from pyecharts import Scatter, EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [30, 30, 30, 30, 30, 30]
v3 = [50, 50, 50, 50, 50, 50]
v4 = [10, 10, 10, 10, 10, 10]
es = EffectScatter("Scatter - EffectScatter 示例")
es.add("es", v1, v2)
scatter = Scatter()
scatter.add("scatter", v1, v3)
es.custom(scatter.get_series())
es_1 = EffectScatter()
es_1.add("es_1", v1, v4, symbol='pin', effect_scale=5)
es.custom(es_1.get_series())
es.show_config()
es.render()
Kline + Line
import random
from pyecharts import Line, Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
attr = ["2017/7/{}".format(i + 1) for i in range(31)]
kline = Kline("Kline - Line 示例")
kline.add("日K", attr, v1)
line_1 = Line()
line_1.add("line-1", attr, [random.randint(2400, 2500) for _ in range(31)])
line_2 = Line()
line_2.add("line-2", attr, [random.randint(2400, 2500) for _ in range(31)])
kline.custom(line_1.get_series())
kline.custom(line_2.get_series())
kline.show_config()
kline.render()
用户可以自定义结合 Line/Bar/Kline/Scatter/EffectScatter/Pie/HeatMap 图表,将不同类型图表画在多张图上。同样也是要以某一张图表为基础。
需使用 get_series()
和 grid()
方法
get_series()
""" 获取图表的 series 数据 """
grid(series,grid_width, grid_height, grid_top, grid_bottom, grid_left, grid_right)
''' 并行显示图表 '''
先用 get_series()
获取数据,再使用 grid()
将图表结合在一起
上下类型,Bar + Line
from pyecharts import Bar, Line
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", height=720, is_grid=True)
bar.add("商家A", attr, v1, is_stack=True, grid_bottom="60%")
bar.add("商家B", attr, v2, is_stack=True, grid_bottom="60%")
line = Line("折线图示例", title_top="50%")
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_top="50%")
bar.grid(line.get_series(), grid_top="60%")
bar.show_config()
bar.render()
再次Tip: bar.grid(line.get_series(), grid_top="60%")
不要写成 bar.grid(bar.get_series())
不然会陷入无限递归中
具体流程如下:
左右类型,Scatter + EffectScatter
from pyecharts import Scatter, EffectScatter
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
scatter = Scatter(width=1200, is_grid=True)
scatter.add("散点图示例", v1, v2, grid_left="60%", legend_pos="70%")
es = EffectScatter()
es.add("动态散点图示例", [11, 11, 15, 13, 12, 13, 10], [1, -2, 2, 5, 3, 2, 0],
effect_scale=6, legend_pos="20%")
scatter.grid(es.get_series(), grid_right="60%")
scatter.show_config()
scatter.render()
上下左右类型,Bar + Line + Scatter + EffectScatter
from pyecharts import Bar, Line, Scatter, EffectScatter
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", height=720, width=1200, title_pos="65%", is_grid=True)
bar.add("商家A", attr, v1, is_stack=True, grid_bottom="60%", grid_left="60%")
bar.add("商家B", attr, v2, is_stack=True, grid_bottom="60%", grid_left="60%", legend_pos="80%")
line = Line("折线图示例")
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%")
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
scatter = Scatter("散点图示例", title_top="50%", title_pos="65%")
scatter.add("scatter", v1, v2, legend_top="50%", legend_pos="80%")
es = EffectScatter("动态散点图示例", title_top="50%")
es.add("es", [11, 11, 15, 13, 12, 13, 10], [1, -2, 2, 5, 3, 2, 0], effect_scale=6,
legend_top="50%", legend_pos="20%")
bar.grid(line.get_series(), grid_bottom="60%", grid_right="60%")
bar.grid(scatter.get_series(), grid_top="60%", grid_left="60%")
bar.grid(es.get_series(), grid_top="60%", grid_right="60%")
bar.show_config()
bar.render()
Line + Pie
from pyecharts import Line, Pie
line = Line("折线图示例", width=1200, is_grid=True)
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"],
mark_line=["average"], grid_right="65%")
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例", title_pos="45%")
pie.add("", attr, v1, radius=[30, 55], legend_pos="65%", legend_orient='vertical')
line.grid(pie.get_series(), grid_left="60%")
line.show_config()
line.render()
Tip: 可以通过设置 center 参数改变 Pie 图的位置,如 [v1, v2], 要求 v1 > v2。
Line + Kline
from pyecharts import Line, Kline
line = Line("折线图示例", width=1200, is_grid=True)
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"],
mark_line=["average"], grid_right="60%")
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%", grid_right="60%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例", title_pos="60%")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, legend_pos="80%")
line.grid(kline.get_series(), grid_left="55%")
line.show_config()
line.render()
HeatMap + Bar
import random
from pyecharts import HeatMap, Bar
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heatmap = HeatMap("热力图示例", height=700, is_grid=True)
heatmap.add("热力图直角坐标系", x_axis, y_aixs, data, is_visualmap=True, visual_top="45%",
visual_text_color="#000", visual_orient='horizontal', grid_bottom="60%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", title_top="52%")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True, legend_top="50%")
heatmap.grid(bar.get_series(), grid_top="60%")
heatmap.show_config()
heatmap.render()
Bar 会受 HeatMap 影响,很有趣。
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。