# econtools **Repository Path**: sunronghua/econtools ## Basic Information - **Project Name**: econtools - **Description**: Econometrics and data manipulation functions. - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 3 - **Created**: 2020-03-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # econtools *econtools* is a Python package of econometric functions and convenient shortcuts for data work with [pandas](http://github.com/pydata/pandas) and [numpy](https://github.com/numpy/numpy). Full documentation [here](http://www.danielmsullivan.com/econtools). ## Econometrics - OLS, 2SLS, LIML - Option to absorb any variable via within-transformation (a la `areg` in Stata) - Robust standard errors - HAC (`robust`/`hc1`, `hc2`, `hc3`) - Clustered standard errors - Spatial HAC (SHAC, aka Conley standard errors) with uniform and triangle kernels - F-tests by variable name or `R` matrix. - Local linear regression. ```python import econtools import econtools.metrics as mt # Read Stata DTA file df = econtools.read('my_data.dta') # Estimate OLS regression with fixed-effects and clustered s.e.'s result = mt.reg(df, # DataFrame to use 'y', # Outcome ['x1', 'x2'], # Indep. Variables a_name='person_id', # Fixed-effects using variable 'person_id' cluster='state' # Cluster by state ) # Results print(result.summary) # Print regression results beta_x1 = result.beta['x1'] # Get coefficient by variable name r_squared = result.r2a # Get adjusted R-squared joint_F = result.Ftest(['x1', 'x2']) # Test for joint significance equality_F = result.Ftest(['x1', 'x2'], equal=True) # Test for coeff. equality ``` ## Regression and Summary Stat Tables - `outreg` takes regression results and creates a LaTeX-formatted tabular fragment. - `table_statrow` can be used to add arbitrary statistics, notes, etc. to a table. Can also be used to create a table of summary statistics. - `write_notes` makes it easy to save table notes that depend on your data. ## Data I/O - `read` and `write`: Use the passed file path's extension to determine which `pandas` I/O method to use. Useful for writing functions that programmatically read DataFrames from disk which are saved in different formats. See examples above and below. - `load_or_build`: A function decorator that caches datasets to disk. This function builds the requested dataset and saves it to disk if it doesn't already exist on disk. If the dataset is already saved, it simply loads it, saving computational time and allowing the use of a single function to both load and build data. ```python from econtools import load_or_build, read @load_or_build('my_data_file.dta') def build_my_data_file(): """ Cleans raw data from CSV format and saves as Stata DTA. """ df = read('raw_data.csv') # Clean the DataFrame return df ``` File type is automatically detected from the passed filename. In this case, Stata DTA from `my_data_file.dta`. - `save_cli`: Simple wrapper for `argparse` that let's you use a `--save` flag on the command line. This lets you run a regression without over-writing the previous results and without modifying the code in any way (i.e., commenting out the "save" lines). In your regression script: ```python from econtools import save_cli def regression_table(save=False): """ Run a regression and save output if `save == True`. """ # Regression guts if __name__ == '__main__': save = save_cli() regression_table(save=save) ``` In the command line/bash script: ```bash python run_regression.py # Runs regression without saving output python run_regression.py --save # Runs regression and saves output ``` ## Coming soon - Simple Kriging - Prettier regression output