# Underwater Image Enhancement with Reinforcement Learning **Repository Path**: sunshixin_upc/underwater-image-enhancement-with-reinforcement-learning ## Basic Information - **Project Name**: Underwater Image Enhancement with Reinforcement Learning - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 11 - **Forks**: 3 - **Created**: 2021-08-30 - **Last Updated**: 2025-05-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Underwater Image Enhancement With Reinforcement Learning #### Prerequisites 1. CUDA 11.0 2. Python 3.7 3. TensorFlow 2.4 #### Compilation Install all the python dependencies using pip: pip install -r requirements.txt #### Data Preparation Prepare the dataset according to [https://li-chongyi.github.io/proj_benchmark.html](https://li-chongyi.github.io/proj_benchmark.html) and put the data into the corresponding folder as follows: RL └── data ├── train │ ├── target │ └── raw └── test ├── target └── raw #### Training 1. Clone the repo 2. Download the VGG-pretrained model from [VGG in Tensorflow](https://github.com/jcheng1602/tensorflow-vgg) 3. Put the training data to corresponding folders 4. CUDA_VISIBLE_DEVICES=1 python3 main.py --prefix train_model 5. Find checkpoints in the ./checkpoints/ #### Implementation 1. Clone the repo 2. Change the default value of --test to True and the default value of --model_path to $model path in ./checkpoints 3. Download the checkpoint from [Baidu Cloud](https://pan.baidu.com/s/1NLVFlfivIm-tyAJut73vQw) (Password: 1314) 4. Put the data to corresponding folders (target images are only used for scoring and do not participate in the implementation process) 5. CUDA_VISIBLE_DEVICES=1 python3 main.py --test --prefix test_model 6. Find enhancement results in the ./test/test_model/step_0000000000 #### Enhanced Results (Left: Raw. Middle: Reference. Right: Ours) ![Image text](https://gitee.com/sunshixin_upc/underwater-image-enhancement-with-reinforcement-learning/raw/master/Experimental%20results/Testing%20set/86.png)