diff --git a/mindq_projectq/benchmark/ADAPTVQE.md b/mindq_projectq/benchmark/ADAPTVQE.md index 32442f5bd9b1992dc7bf9d11f0d7c1517f264b99..480b2d8555a58c6c9214761545f4a0dd7311ff84 100644 --- a/mindq_projectq/benchmark/ADAPTVQE.md +++ b/mindq_projectq/benchmark/ADAPTVQE.md @@ -10,15 +10,15 @@ ​ The operator pool is constructed by operators in the UCCSD or UCCGSD ansatz. -​ Spin complemented operators: +​ Spin complemented single and double operators: -​ for example: H2(4 spin orbital) +​ For example: H2 (4 spin orbital) -​ single operator: +​ single fermionic operator: ​ $-0.5\hat{a}_0^\dagger\hat{a}_2 + -0.5\hat{a}_1^\dagger\hat{a}_3 + 0.5\hat{a}_0^\dagger\hat{a}_2+0.5\hat{a}_3^\dagger\hat{a}_1$ -​ double operator: +​ double fermionic operator: ​ $-\frac{1}{\sqrt{2}}\hat{a}_1^\dagger\hat{a}_0^\dagger\hat{a}_2\hat{a}_3+\frac{1}{\sqrt{2}}\hat{a}_3^\dagger\hat{a}_2^\dagger\hat{a}_1\hat{a}_0$ @@ -60,17 +60,25 @@ 8. Go to step 4. -NOTE: + + +## 4. Setting: 1. The gradient of each operator in the pool can also be approximated by the parameter shift rule. - $\frac{\partial E^{(n)}}{\partial\theta_n}|_{\theta_n=0}\approx\frac{E^{(n)}(\vec{\theta}_{i-1}, \theta_n=\delta)-E^{(n)}(\vec{\theta}_{i-1}, \theta_n=-\delta)}{2\delta}$, where $E^{(n)}(\vec{\theta}_{i-1}, \theta_n=\delta)=\langle \psi^{(n-1)}|e^{-\delta\hat{A}_i}\hat{H}e^{\delta\hat{A}_i}|\psi^{(n-1)}\rangle$. ($\delta=1e-5$) + $\frac{\partial E^{(n)}}{\partial\theta_n}|_{\theta_n=0}\approx\frac{E^{(n)}(\vec{\theta}_{i-1}, \theta_n=\delta)-E^{(n)}(\vec{\theta}_{i-1}, \theta_n=-\delta)}{2\delta}$, where $E^{(n)}(\vec{\theta}{i-1}, \theta_n=\delta)=\langle \psi^{(n-1)}|e^{-\delta\hat{A}_i}\hat{H}e^{\delta\hat{A}_i}|\psi^{(n-1)}\rangle$ . + + Here we set $\delta = 1e-5$ . 2. The convergence condition is set as - $\sqrt{\sum_{\hat{A}_i \in pool} \langle \psi^{(n-1)}|[\hat{H},\hat{A}_i]|\psi^{(n-1)}\rangle} \le \varepsilon$, and $\varepsilon = 1e-2$ + $\sqrt{\sum_{\hat{A}_i \in pool} \langle \psi^{(n-1)}|[\hat{H},\hat{A}_i]|\psi^{(n-1)}\rangle} \le \varepsilon$, and $\varepsilon = 1e-2$ . + +3. Optimizer: + + **BFGS**: Broyden–Fletcher–Goldfarb–Shanno algorithm. (tol=1e-6) -## 4. Reference +## 5. Reference ​ origin paper: [An adaptive variational algorithm for exact molecular simulations on a quantum computer](https://doi.org/10.1038/s41467-019-10988-2 | www.nature.com/naturecommunications) diff --git a/mindq_projectq/benchmark/QCC.md b/mindq_projectq/benchmark/QCC.md index 6b65a21f22497ef862e10b3702dbff79202fb65c..365ec8dce153e3cedb49587677461de9443d39d9 100644 --- a/mindq_projectq/benchmark/QCC.md +++ b/mindq_projectq/benchmark/QCC.md @@ -36,7 +36,11 @@ $$ ​ The quantity of all entanglers is $4^{N_q}-3N_q-1$. A pre-screening based on the first and second terms of the Taylor expansion by evaluating $\frac{d E(\tau, \hat{P})}{d\tau} |_{\tau=0}$ and $\frac{d^2 E(\tau, \hat{P})}{d^2 \tau} |_{\tau=0}$. -## 3. Reference +## 3. Setting + + This part will be added later. + +## 4. Reference origin paper: [Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer]([Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer | Journal of Chemical Theory and Computation (acs.org)](https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00932)) diff --git a/mindq_projectq/benchmark/qubit-ADAPT-VQE.md b/mindq_projectq/benchmark/qubit-ADAPT-VQE.md index 107c9f37cc81e855cdcfe79583cab3bc34369e31..809dff236326682c628d7b1c28988be23d55e228 100644 --- a/mindq_projectq/benchmark/qubit-ADAPT-VQE.md +++ b/mindq_projectq/benchmark/qubit-ADAPT-VQE.md @@ -55,9 +55,14 @@ +**Note**: qubit-ADAPT-VQE is quite similar to ADAPT VQE except for the "qubit pool". -**Note**: A convergence condition is not given in the original paper. Therefore, a suitable one can be defined by yourself. -## 4. Reference +## 4. Setting + + A convergence condition is not given in the original paper. Therefore, a suitable +one can be defined by yourself. + +## 5. Reference ​ original paper: [Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor]([PRX Quantum 2, 020310 (2021) - Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ans\"atze on a Quantum Processor (aps.org)](https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020310))