# TlResNet **Repository Path**: sw_yy/TlResNet ## Basic Information - **Project Name**: TlResNet - **Description**: No description available - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-02-12 - **Last Updated**: 2022-02-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TlResNet transfer learning, ResNet34 prgorams: model.py # Building the model framework structure train.py # training the final model: combined with a specific transfer learning strategy to fine-tune the parameters of pre-trained model to obtain the final model predict.py # predicting the class of microsomal fossils using the final model datas: data_set # train, validation and test set images of 9 taxon microsomal fossils models: -pre.pth # pre-training model .pth # final Model operating steps: train.py -> predict.py 1. introduce the ImageNet pre-trained model parameters file; 2. Modify the code of the transfer strategy in the train.py file according to specific needs, i.e. freeze some layers of the pre-trained model; 3. use 9 microfossil datasets to retrain based on the pre-trained model and migration strategy to get the final model and save it; 4. use the trained final model to predict the microfossil classes in the test set and output the results.