# CoTNet **Repository Path**: swing148/CoTNet ## Basic Information - **Project Name**: CoTNet - **Description**: No description available - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-16 - **Last Updated**: 2024-12-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction This repository is the official implementation of [**Contextual Transformer Networks for Visual Recognition**](https://arxiv.org/pdf/2107.12292.pdf). CoT is a unified self-attention building block, and acts as an alternative to standard convolutions in ConvNet. As a result, it is feasible to replace convolutions with their CoT counterparts for strengthening vision backbones with contextualized self-attention.

# 2021/3/25-2021/6/5: CVPR 2021 Open World Image Classification Challenge **Rank 1** in [Open World Image Classification Challenge](https://eval.ai/web/challenges/challenge-page/1041/leaderboard/2695) @ CVPR 2021. (Team name: VARMS) # Usage The code is mainly based on [timm](https://github.com/rwightman/pytorch-image-models). ### Requirement: * PyTorch 1.8.0+ * Python3.7 * CUDA 10.1+ * [CuPy](https://cupy.dev/). ### Clone the repository: ``` git clone https://github.com/JDAI-CV/CoTNet.git ``` ### Train First, download the [ImageNet](https://github.com/facebookarchive/fb.resnet.torch/blob/master/INSTALL.md) dataset. To train CoTNet-50 on ImageNet on a single node with 8 gpus for 350 epochs run: ``` python -m torch.distributed.launch --nproc_per_node=8 train.py --folder ./experiments/cot_experiments/CoTNet-50-350epoch ``` The training scripts for CoTNet (e.g., CoTNet-50) can be found in the [cot_experiments](cot_experiments) folder. # Inference Time vs. Accuracy CoTNet models consistently obtain better top-1 accuracy with less inference time than other vision backbones across both default and advanced training setups. In a word, CoTNet models seek better inference time-accuracy trade-offs than existing vision backbones.

## Results on ImageNet | name | resolution | #params | FLOPs | Top-1 Acc. | Top-5 Acc. | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | CoTNet-50 | 224 | 22.2M | 3.3 | 81.3 | 95.6 | [GoogleDrive](https://drive.google.com/file/d/1SR5ezIu7LN943zHaUh4mC0ehxBVMqtfv/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1czr00SglgD8dNVK8jT1yLg) | | CoTNeXt-50 | 224 | 30.1M | 4.3 | 82.1 | 95.9 | [GoogleDrive](https://drive.google.com/file/d/1j6b5D3xcZ5L_bHiQV0WfqyOieqZLVOCv/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1CeV9IH_P5N9yuO-wOpdGNw) | | SE-CoTNetD-50 | 224 | 23.1M | 4.1 | 81.6 | 95.8 | [GoogleDrive](https://drive.google.com/file/d/1D2b5fr3lxpBpiFcCYBKngmmSgfVHt_56/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1s5Xg7AqzWuwFJUzOJDoo4Q) | | CoTNet-101 | 224 | 38.3M | 6.1 | 82.8 | 96.2 | [GoogleDrive](https://drive.google.com/file/d/11jExbPEg4Eq5PApisZyE5k-1CbRYnsQb/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1Olpta0AV7N4OoiC8PB4BnA) | | CoTNeXt-101 | 224 | 53.4M | 8.2 | 83.2 | 96.4 | [GoogleDrive](https://drive.google.com/file/d/1des5wgkBDUscQAs8IYOmKCKKUA46QLfJ/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1FM0QRZJee7uY7iKaEiUA-w) | | SE-CoTNetD-101 | 224 | 40.9M | 8.5 | 83.2 | 96.5 | [GoogleDrive](https://drive.google.com/file/d/1PWIltQYpYZiDrpfZORRQzGzQeXVd2b2f/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1WGFzuwio5lWJKiOOJTnjdg) | | SE-CoTNetD-152 | 224 | 55.8M | 17.0 | 84.0 | 97.0 | [GoogleDrive](https://drive.google.com/file/d/1MkMx0a8an3ikt6LZwClIOyabBnMfR91v/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/14mNVsSf-6WI3mxLN2WinWw) | | SE-CoTNetD-152 | 320 | 55.8M | 26.5 | 84.6 | 97.1 | [GoogleDrive](https://drive.google.com/file/d/1E43T2jS37gR07p_FVWnjJNkMWeYMXgX9/view?usp=sharing) / [Baidu](https://pan.baidu.com/s/1kO5of8IPgL4HOudLeykS6w) | Access code for Baidu is **cotn** ## CoTNet on downstream tasks For **Object Detection and Instance Segmentation**, please see [CoTNet for Object Detection and Instance Segmentation](https://github.com/JDAI-CV/CoTNet-ObjectDetection-InstanceSegmentation). ## Citing Contextual Transformer Networks ``` @article{cotnet, title={Contextual Transformer Networks for Visual Recognition}, author={Li, Yehao and Yao, Ting and Pan, Yingwei and Mei, Tao}, journal={arXiv preprint arXiv:2107.12292}, year={2021} } ``` ## Acknowledgements Thanks the contribution of [timm](https://github.com/rwightman/pytorch-image-models) and awesome PyTorch team.