# cosmo-face **Repository Path**: syshensyshen/cosmo-face ## Basic Information - **Project Name**: cosmo-face - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # cosmo-face ## face detection and landmark detection + source data https://pan.baidu.com/s/1jIp9t30oYivrAvrgUgIoLQ 提取码:ruck annotations(face bounding boxes & five facial landmarks) https://pan.baidu.com/s/1Laby0EctfuJGgGMgRRgykA + pretrain model https://pan.baidu.com/s/12h97Fy1RYuqMMIV-RpzdPg 提取码:fstq + prepared data + 具体的数据集 data/ 文件夹结构如下: + widerface/ + train/ + images/ + 0-Parade/ + 0_Parade_marchingband_1_5.jpg + label.txt + val/ + images/ + 0-Parade/ + 0_Parade_marchingband_1_20.jpg + wider_val.txt + FDDB/ + images/ + 2002/ + 07/ + 19/ + big/ + img_18.jpg + img_list.txt + train data + centerface + 运行 train_centerface.py (backbone 支持 resnet18, resnet50, ghost, RFB) + retinaface + 运行 train_retina.py (backbone 支持 mobilenet0.25, resnet50, ghost, RFB, slim) + inference data + centerface + 运行 widerface_test_centerface.py (支持单张图片和文件夹) + retinaface + 运行 widerface_test_retina.py (支持单张图片和文件夹) + calculate mAP + 计算某个模型的mAP步骤: 1. 运行 widerface_test_centerface.py widerface_evaluate/文件夹 结构如下: + ground_truth/ + wider_easy_val.mat + wider_face_val.mat + wider_hard_val.mat + wider_medium_val.mat + widerface_txt/ + 24--Soldier_Firing/ + 24_Soldier_Firing_Soldier_Firing_24_10.txt 2. 运行 ./widerface_evalueta/evaluation.py ## face recognition + source data https://pan.baidu.com/s/1S6LJZGdqcZRle1vlcMzHOQ + prepared data ` python prepare_data.py ` + 具体的数据集 data/ 文件夹结构如下: + faces_emore/ + agedb_30/ + calfw/ + cfp_ff/ + cfp_fp/ + cplfw/ + imgs/ + lfw/ + vgg2_fp/ + agedb_30_list.npy + agedb_30.bin + calfw_list.npy + calfw.bin + cfp_ff_list.npy + cfp_ff.bin + cfp_fp_list.npy + cfp_fp.bin + cplfw_list.npy + cplfw.bin + lfw_list.npy + lfw.bin + property + train.idx + train.rec + vgg2_fp_list.npy + vgg2_fp.bin + train data ` python train.py -net ir_se -depth 50 ` + -net ir_se -depth 50 设置网络是ir_se50 (建议), 可调整; + -lr 0.1 设置初始学习率是0.1 (建议), 可调整; + inference data 1. 先将人脸数据放在./recognition/data/faces_database/data 文件夹下 2. 运行 ./alignment/face_align.py 产生人脸对齐后的数据 3. 如果有新的人脸数据, 需要先更新人脸库, 需设置args.update = True 4. 运行./recognition/face_verify.py