# EventExtraction-RAAT **Repository Path**: tangentor/EventExtraction-RAAT ## Basic Information - **Project Name**: EventExtraction-RAAT - **Description**: clone from https://github.com/TencentYoutuResearch/EventExtraction-RAAT.git - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2023-05-13 - **Last Updated**: 2024-06-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ReDEE Source code for the paper ["RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction"](https://arxiv.org/abs/2206.03377) , in NAACL 2022. ### Overview In document-level event extraction (DEE) task, event arguments always scatter across sen- tences (across-sentence issue) and multiple events may lie in one document (multi-event issue). In this paper, we argue that the rela- tion information of event arguments is of great significance for addressing the above two is- sues, and propose a new DEE framework which can model the relation dependencies, called Relation-augmented Document-level Event Ex- traction (ReDEE). More specifically, this frame- work features a novel and tailored transformer, named as Relation-augmented Attention Trans- former (RAAT). RAAT is scalable to cap- ture multi-scale and multi-amount argument relations. To further leverage relation in- formation, we introduce a separate event re- lation prediction task and adopt multi-task learning method to explicitly enhance event extraction performance. Extensive experi- ments demonstrate the effectiveness of the proposed method, which can achieve state-of- the-art performance on two public datasets. * Architecture ![architecture](/pictures/architecture.png) * Overall Result ![architecture](/pictures/overall_result.png) ### Code Structure ``` RAAT/ ├─ dee/ ├── __init__.py ├── event_type.py: event definition and structure. ├── base_task.py: ├── dee_task.py ├── ner_task.py ├── dee_helper.py: data features construction and evaluation utils ├── dee_metric.py: data evaluation utils ├── dee_model.py: ReDEE model ├── ner_model.py ├── transformer.py: transformer module ├── utils.py: utils ├─ dre/ ├── __init__.py ├── utils.py ├── modeling_bert.py ├─ scripts/ ├── train_multi.sh ├── eval.sh ├─ Data/ ├── data.zip ├─ README.md ├─ run_dee_task.py: the main entry ├─ requirements.txt ├─ Exps/: experiment outputs ├─ LICENSE ``` ### Environment ``` python (3.6.9) cuda (10.1) Ubuntu-18.0.4 or centos 7.0 ``` ### Dependencies ``` torch==1.6.0 pytorch-pretrained-bert==0.4.0 transformers==3.0.2 numpy tensorboardX ``` ### Data Preparation ``` $ cd Data $ unzip data.zip // you can get train.json, dev.json, and test.json files used in experiment. ``` ### Train ``` $ cd scripts $ ./train_multi.sh ``` ### Evaluation ``` $ cd scripts $ ./eval.sh ``` ### Licence This project is licensed under the Apache License - see the [LICENSE](LICENSE) file for details. ### Citation If you use this work or code, please kindly cite the following paper: ``` @inproceedings{liang-etal-2022-raat, title = "{RAAT}: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction", author = "Liang, Yuan and Jiang, Zhuoxuan and Yin, Di and Ren, Bo", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", pages = "4985--4997", } ```