# StrongSORT-YOLO-main **Repository Path**: testmodel_1/strong-sort-yolo-main ## Basic Information - **Project Name**: StrongSORT-YOLO-main - **Description**: 目标跟踪 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-12-21 - **Last Updated**: 2024-03-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # StrongSORT with OSNet for YoloV5, YoloV7, YoloV8 (Counter)


# Official YOLOv5
CI CPU testing
Open In Colab
# Official YOLOv7 Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov7-trainable-bag-of-freebies-sets-new/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7) Open In Colab [![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2207.02696-B31B1B.svg)](https://arxiv.org/abs/2207.02696) Ultralytics CI Ultralytics Code Coverage YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle [Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
## Introduction This repository contains a highly configurable two-stage-tracker that adjusts to different deployment scenarios. The detections generated by [YOLOv5](https://github.com/ultralytics/yolov5), [YOLOv7](https://github.com/WongKinYiu/yolov7), [YOLOv8](https://github.com/ultralytics/ultralytics) a family of object detection architectures and models pretrained on the COCO dataset, are passed to [StrongSORT](https://github.com/dyhBUPT/StrongSORT)[](https://arxiv.org/pdf/2202.13514.pdf) which combines motion and appearance information based on [OSNet](https://github.com/KaiyangZhou/deep-person-reid)[](https://arxiv.org/abs/1905.00953) in order to tracks the objects. It can track any object that your Yolov5 model was trained to detect. ## Before you run the tracker 1. Clone the repository recursively: `git clone --recurse-submodules https://github.com/bharath5673/StrongSORT-YOLO.git ` If you already cloned and forgot to use `--recurse-submodules` you can run `git submodule update --init` 2. Make sure that you fulfill all the requirements: Python 3.8 or later with all [requirements.txt](https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch/blob/master/requirements.txt) dependencies installed, including torch>=1.7. To install, run: `pip install -r requirements.txt` ## Tracking sources Tracking can be run on most video formats ## Select object detectors and ReID model ### Yolov5 There is a clear trade-off between model inference speed and accuracy. In order to make it possible to fulfill your inference speed/accuracy needs you can select a Yolov5 family model for automatic download ```bash $ python track_v5.py --source 0 --yolo-weights weights/yolov5n.pt --img 640 yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt --img 1280 ... ``` ### Yolov7 There is a clear trade-off between model inference speed and accuracy. In order to make it possible to fulfill your inference speed/accuracy needs you can select a Yolov5 family model for automatic download ```bash $ python track_v7.py --source 0 --yolo-weights weights/yolov7-tiny.pt --img 640 yolov7.pt yolov7x.pt yolov7-w6.pt yolov7-e6.pt yolov7-d6.pt yolov7-e6e.pt ... ``` ### StrongSORT The above applies to StrongSORT models as well. Choose a ReID model based on your needs from this ReID [model zoo](https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO) ```bash $ python track_v*.py --source 0 --strong-sort-weights osnet_x0_25_market1501.pt osnet_x0_5_market1501.pt osnet_x0_75_msmt17.pt osnet_x1_0_msmt17.pt ... ``` ## Filter tracked classes By default the tracker tracks all MS COCO classes. If you only want to track persons I recommend you to get [these weights](https://drive.google.com/file/d/1gglIwqxaH2iTvy6lZlXuAcMpd_U0GCUb/view?usp=sharing) for increased performance ```bash python track_v*.py --source 0 --yolo-weights weights/v*.pt --classes 0 # tracks persons, only ``` If you want to track a subset of the MS COCO classes, add their corresponding index after the classes flag ```bash python track_v*.py --source 0 --yolo-weights weights/v*.pt --classes 16 17 # tracks cats and dogs, only ``` ### Counter ![counter](demo.gif) #### get realtime counts of every tracking objects without any rois or any line interctions ```bash $ python track_v*.py --source test.mp4 -yolo-weights weights/v*.pt --save-txt --count --show-vid ``` ### Draw Object Trajectory ```bash $ python track_v*.py --source test.mp4 -yolo-weights weights/v*.pt --save-txt --count --show-vid --draw ``` [Here](https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/) is a list of all the possible objects that a Yolov5 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zero. ## MOT compliant results Can be saved to your experiment folder `runs/track/_/` by ```bash python track_v*.py --source ... --save-txt ```

YoloV8 (Counter)

![V8 counter](demo_yoloV8.gif) ```bash ## recommended conda env python=3.10 ## conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ## pip install ultralytics $ python track_v8.py --source 0 --track --count ``` ## Acknowledgements
Expand * [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet) * [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor) * [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4) * [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4) * [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) * [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3) * [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) * [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG) * [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022) * [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose) * [https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)