# TimeseriesPredictByDeopLearning **Repository Path**: the-ning/timeseries-predict-by-deop-learning ## Basic Information - **Project Name**: TimeseriesPredictByDeopLearning - **Description**: 深度学习时间序列预测项目代码 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-27 - **Last Updated**: 2024-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper [Multi-Time Attention Networks for Irregularly Sampled Time Series](https://openreview.net/forum?id=4c0J6lwQ4_) by [Satya Narayan Shukla](https://satyanshukla.github.io/) and [Benjamin M. Marlin](https://people.cs.umass.edu/~marlin). This work has been accepted at the [International Conference on Learning Representations](https://iclr.cc/), 2021.

## Requirements The code requires Python 3.7 or later. The file [requirements.txt](requirements.txt) contains the full list of required Python modules. ```bash pip3 install -r requirements.txt ``` ## Training and Evaluation 1. Interpolation Task on Toy Dataset ```bash python3 tan_interpolation.py --niters 5000 --lr 0.0001 --batch-size 128 --rec-hidden 32 --latent-dim 1 --length 20 --enc mtan_rnn --dec mtan_rnn --n 1000 --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 20 --dataset toy ``` 2. Interpolation Task on PhysioNet Dataset ```bash python3 tan_interpolation.py --niters 500 --lr 0.001 --batch-size 32 --rec-hidden 64 --latent-dim 16 --quantization 0.016 --enc mtan_rnn --dec mtan_rnn --n 8000 --gen-hidden 50 --save 1 --k-iwae 5 --std 0.01 --norm --learn-emb --kl --seed 0 --num-ref-points 64 --dataset physionet --sample-tp 0.9 ``` 3. Classification Task on PhysioNet Dataset (mTAND-Full) ```bash python3 tan_classification.py --alpha 100 --niters 300 --lr 0.0001 --batch-size 50 --rec-hidden 256 --gen-hidden 50 --latent-dim 20 --enc mtan_rnn --dec mtan_rnn --n 8000 --quantization 0.016 --save 1 --classif --norm --kl --learn-emb --k-iwae 1 --dataset physionet ``` 4. Classification Task on PhysioNet Dataset (mTAND-Enc) ```bash python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 128 --rec-hidden 128 --enc mtan_enc --n 8000 --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset physionet --seed 0 ``` 5. Classification Task on MIMIC-III Dataset (mTAND-Full) ```bash python3 tan_classification.py --alpha 5 --niters 300 --lr 0.0001 --batch-size 128 --rec-hidden 256 --gen-hidden 50 --latent-dim 128 --enc mtan_rnn --dec mtan_rnn --save 1 --classif --norm --learn-emb --k-iwae 1 --dataset mimiciii ``` For MIMIC-III Dataset, first you need to have an access to the dataset which can be requested [here](https://mimic.physionet.org/gettingstarted/access/). We follow the data extraction process described here: https://github.com/mlds-lab/interp-net. 6. Classification Task on MIMIC-III Dataset (mTAND-Enc) ```bash python3 tanenc_classification.py --niters 200 --lr 0.0001 --batch-size 256 --rec-hidden 256 --enc mtan_enc --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset mimiciii --seed 0 ``` 7. Classification Task on Human Activity Dataset (mTAND-Enc) ```bash python3 tanenc_classification.py --niters 1000 --lr 0.001 --batch-size 256 --rec-hidden 512 --enc mtan_enc_activity --quantization 0.016 --save 1 --classif --num-heads 1 --learn-emb --dataset activity --seed 0 --classify-pertp ``` ## Interpolation Results Interpolation performance on PhysioNet with varying percent of observed time points:

## Classification Results Classification performance on PhysioNet, MIMIC-III and Human activity dataset, and time per epoch in minutes for all the methods on PhysioNet.

## Reference ```bash @inproceedings{ shukla2021multitime, title={Multi-Time Attention Networks for Irregularly Sampled Time Series}, author={Satya Narayan Shukla and Benjamin Marlin}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=4c0J6lwQ4_} } ```