# Stock-Prediction-RNN **Repository Path**: thomaswang0525/Stock-Prediction-RNN ## Basic Information - **Project Name**: Stock-Prediction-RNN - **Description**: Stock Price prediction for Yahoo Inc. using GRU (Gated Recurrant Units) in Keras. Predicting closing price for Yahoo stocks - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2022-03-30 - **Last Updated**: 2022-03-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Stock Prediction using Time Series Analysis Closing Price prediction of Yahoo stocks from 2010 - 2016 using Gated Recurrant Units Model is already trained and saved in 'stock_price_GRU.h5' file To obtain the trained model just comment out the lines 47-55 and 60-62, then uncomment the lines 57-58 to load 'stock_price_GRU.h5' file Highly Recommend using GPU version of Tensorflow for running the model #### DATA INPUT_DATA date open low high close 2010-01-04 16.940001 16.879999 17.200001 17.100000 2010-01-05 17.219999 17.000000 17.230000 17.230000 2010-01-06 17.170000 17.070000 17.299999 17.170000 2010-01-07 16.809999 16.570000 16.900000 16.700001 2010-01-08 16.680000 16.620001 16.760000 16.700001 LABEL_DATA date close 2010-01-04 17.230000 2010-01-05 17.170000 2010-01-06 16.700001 2010-01-07 16.700001 2010-01-08 16.740000 #### MODEL Layer (type) Output Shape Param # _________________________________________________________________ gru_1 (GRU) (None, 1, 512) 794112 _________________________________________________________________ dropout_1 (Dropout) (None, 1, 512) 0 _________________________________________________________________ gru_2 (GRU) (None, 256) 590592 _________________________________________________________________ dropout_2 (Dropout) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 1) 257 _________________________________________________________________ Total params: 1,384,961 Trainable params: 1,384,961 Non-trainable params: 0 _________________________________________________________________ #### TRAINING Epoch 500/500 250/1061 [======>.......................] - ETA: 0s - loss: 7.2934e-04 750/1061 [====================>.........] - ETA: 0s - loss: 6.7267e-04 1061/1061 [==============================] - 0s 111us/step - loss: 6.4617e-04 - val_loss: 6.4601e-04 32/582 [>.............................] - ETA: 0s 352/582 [=================>............] - ETA: 0s 582/582 [==============================] - 0s 154us/step Score: 0.000513115886573222 #### RESULTS 33% of Data used for Testing Plot only shows the last points of test set and predicted values ![alt text](https://github.com/jha-prateek/Stock-Prediction-RNN/blob/master/predicted_test.JPG)