# ZYNQ-NVDLA
**Repository Path**: thomasz/ZYNQ-NVDLA
## Basic Information
- **Project Name**: ZYNQ-NVDLA
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-11-23
- **Last Updated**: 2023-11-23
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
ZYNQ-NVDLA
NVDLA Xilinx FPGA Mapping!
1. [Technical Post](https://zhuanlan.zhihu.com/p/378202360)
2. **[Tengine Frontend Supported !](https://github.com/OAID/Tengine)**
## File Tree of WorkSpace
```
IP/ Vivado IP Package For Nvdla Small
include/ Tengine backend include
RTL/ nvdla small rtl (include wrapper.v)
kmd/ kernel mode drive for petalinux (include zynq7000 / zynq MPSoc)
paper/ Latex paper for Bachelor degree
prebuilt/ aarch64 prebuilt lib
reports/ Timing、Power、Resource、Execution reports
sdk_sanity/ sdk sanity Test for NVDLA
umd/ Compiler and Runtime source code
```
## Talk
- Tengine Open Talk : New Backend OpenDLA. [[slides](https://github.com/LeiWang1999/ZYNQ-NVDLA/TengineTalk.pdf)] [[recording](https://www.bilibili.com/video/BV1z44y1478k)]
## Test
#### 3.1 Classification
**Resnet18-Cifar10**
```bash
$ cd /build
$ cmake --build . --target tm_classification_opendla
$ cd examples
$ ./tm_classification_opendla -m /root/Tengine/models/resnet18-cifar10-nosoftmax-relu_int8.tmfile -i /root/Tengine/images/cat.jpg -g 32,32 -s 1,1,1
Mean value not specified, use default 104.0, 116.7, 122.7
tengine-lite library version: 1.4-dev
NVDLA time: 0.012502 seconds
model file : /root/Tengine/models/resnet18-cifar10-nosoftmax-relu_int8.tmfile
image file : /root/Tengine/images/cat.jpg
img_h, img_w, scale[3], mean[3] : 32 32 , 1.000 1.000 1.000, 104.0 116.7 122.7
Repeat 1 times, thread 1, avg time 12.62 ms, max_time 12.62 ms, min_time 12.62 ms
--------------------------------------
10.087049, 3
3.833079, 2
3.026115, 5
2.420892, 4
-0.403482, 0
--------------------------------------
```
#### 3.2 Detection
**Yolox-nano**
```bash
$ cd /build
$ cmake --build . --target tm_classification_opendla tm_yolox_opendla
$ cd examples
$ ./tm_yolox_opendla -m /root/Tengine/models/yolox_nano_relu_int8.tmfile -i /root/Tengine/images/dog.jpg -r 1
tengine-lite library version: 1.4-dev
Repeat 1 times, thread 1, avg time 1138.80 ms, max_time 1138.80 ms, min_time 1138.80 ms
--------------------------------------
detection num: 3
2: 70%, [ 463, 80, 676, 163], car
16: 52%, [ 122, 220, 315, 517], dog
1: 48%, [ 180, 181, 564, 430], bicycle
```
Output:
