# ZYNQ-NVDLA **Repository Path**: thomasz/ZYNQ-NVDLA ## Basic Information - **Project Name**: ZYNQ-NVDLA - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-23 - **Last Updated**: 2023-11-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

ZYNQ-NVDLA

NVDLA Xilinx FPGA Mapping! 1. [Technical Post](https://zhuanlan.zhihu.com/p/378202360) 2. **[Tengine Frontend Supported !](https://github.com/OAID/Tengine)** ## File Tree of WorkSpace ``` IP/ Vivado IP Package For Nvdla Small include/ Tengine backend include RTL/ nvdla small rtl (include wrapper.v) kmd/ kernel mode drive for petalinux (include zynq7000 / zynq MPSoc) paper/ Latex paper for Bachelor degree prebuilt/ aarch64 prebuilt lib reports/ Timing、Power、Resource、Execution reports sdk_sanity/ sdk sanity Test for NVDLA umd/ Compiler and Runtime source code ``` ## Talk - Tengine Open Talk : New Backend OpenDLA. [[slides](https://github.com/LeiWang1999/ZYNQ-NVDLA/TengineTalk.pdf)] [[recording](https://www.bilibili.com/video/BV1z44y1478k)] ## Test #### 3.1 Classification **Resnet18-Cifar10** ```bash $ cd /build $ cmake --build . --target tm_classification_opendla $ cd examples $ ./tm_classification_opendla -m /root/Tengine/models/resnet18-cifar10-nosoftmax-relu_int8.tmfile -i /root/Tengine/images/cat.jpg -g 32,32 -s 1,1,1 Mean value not specified, use default 104.0, 116.7, 122.7 tengine-lite library version: 1.4-dev NVDLA time: 0.012502 seconds model file : /root/Tengine/models/resnet18-cifar10-nosoftmax-relu_int8.tmfile image file : /root/Tengine/images/cat.jpg img_h, img_w, scale[3], mean[3] : 32 32 , 1.000 1.000 1.000, 104.0 116.7 122.7 Repeat 1 times, thread 1, avg time 12.62 ms, max_time 12.62 ms, min_time 12.62 ms -------------------------------------- 10.087049, 3 3.833079, 2 3.026115, 5 2.420892, 4 -0.403482, 0 -------------------------------------- ``` #### 3.2 Detection **Yolox-nano** ```bash $ cd /build $ cmake --build . --target tm_classification_opendla tm_yolox_opendla $ cd examples $ ./tm_yolox_opendla -m /root/Tengine/models/yolox_nano_relu_int8.tmfile -i /root/Tengine/images/dog.jpg -r 1 tengine-lite library version: 1.4-dev Repeat 1 times, thread 1, avg time 1138.80 ms, max_time 1138.80 ms, min_time 1138.80 ms -------------------------------------- detection num: 3 2: 70%, [ 463, 80, 676, 163], car 16: 52%, [ 122, 220, 315, 517], dog 1: 48%, [ 180, 181, 564, 430], bicycle ``` Output: ![yolox_dla_out](yolox_dla_out.jpg)