# Siamese-RPN2 **Repository Path**: thu_he/Siamese-RPN_ ## Basic Information - **Project Name**: Siamese-RPN2 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-07 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Siamese-RPN This is a PyTorch implementation of SiameseRPN. This project is mainly based on [SiamFC-PyTorch](https://github.com/StrangerZhang/SiamFC-PyTorch) and [DaSiamRPN](https://github.com/foolwood/DaSiamRPN). For more details about siameseRPN please refer to the paper : [High Performance Visual Tracking with Siamese Region Proposal Network](http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf) by Bo Li, Junjie Yan,Wei Wu, Zheng Zhu, Xiaolin Hu. This repository includes training and tracking codes. ## Results This project can get 0.626 AUC on OTB100, and can get better result than the [DaSiamRPN](https://github.com/foolwood/DaSiamRPN) on 46 videos. Test results of 50 trained models on OTB100 are available in the eval_result.json. The best is the 38 epoch. ## Data preparation: You should first get VID dataset and youtube-bb dataset. This process is a little troublesome. The part of code has not been formatted by now. If any one do this, please give a git pull request. python bin/create_dataset_ytbid.py --vid-dir /PATH/TO/ILSVRC2015 --ytb-dir /PATH/TO/YT-BB --output-dir /PATH/TO/SAVE_DATA --num_threads 6 The command above will get a dataset, I put the dataset in the baiduyundisk. Use this data to create lmdb. 链接:https://pan.baidu.com/s/1QnQEM_jtc3alX8RyZ3i4-g 密码:myq4 python bin/create_lmdb.py --data-dir /PATH/TO/SAVE_DATA --output-dir /PATH/TO/RESULT.lmdb --num_threads 12 ## Traing phase: python bin/train_siamrpn.py --data_dir /PATH/TO/SAVE_DATA ## Test phase: Change the data_path first in the test_OTB.py, then run: python bin/test_OTB.py -ms /PATH/TO/MODEL -v cvpr2013 ## Environment: python version == 3.6.5 pytorch version == 1.0.0 ## Model Download: Pretrained model on Imagenet: https://drive.google.com/drive/folders/1HJOvl_irX3KFbtfj88_FVLtukMI1GTCR Model with 0.626 AUC: https://pan.baidu.com/s/1vSvTqxaFwgmZdS00U3YIzQ keyword:v91k ## Reference [1] Li B , Yan J , Wu W , et al. High Performance Visual Tracking with Siamese Region Proposal Network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.