# ContinualRE **Repository Path**: thunlp/ContinualRE ## Basic Information - **Project Name**: ContinualRE - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-05-29 - **Last Updated**: 2022-11-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ContinualRE -- Codes and datasets for our paper "Continual Relation Learning via Episodic Memory Activation and Reconsolidation" If you use the code, please cite the following paper: ``` @inproceedings{han2018neural, title={Continual Relation Learning via Episodic Memory Activation and Reconsolidation}, author={Han, Xu and Dai, Yi and Gao, Tianyu and Lin, Yankai and Liu, Zhiyuan and Li, Peng and Sun, Maosong and Zhou, Jie}, booktitle={Proceedings of ACL}, year={2020} } ``` Requirements ========== The model is implemented using PyTorch. The versions of packages used are shown below. * numpy==1.18.0 * scikit-learn==0.22.1 * scipy==1.4.1 * torch==1.3.0 * tqdm==4.41.1 Baselines ========== The main experimental settings come from the project [Lifelong Relation Detection](https://github.com/hongwang600/ Lifelong_Relation_Detection). We adapt some typical lifelong learning methods for continual relation learning, including EMR, AGEM and EWC. The code of these models can be found in the folder "./baseline/". Datasets ========== We provide all the datasets and word embeddings used in our experiments. + [[Download (datasets)]](https://cloud.tsinghua.edu.cn/f/75578dfc8d974cd98c58/?dl=1) + [[Download (word embeddings)]](https://cloud.tsinghua.edu.cn/f/75578dfc8d974cd98c58/?dl=1) Run the experiments ========== ####(0) To run the experiments, unpack the datasets and word embeddings first ``` unzip data.zip -d data/ unzip glove.zip -d glove/ ``` ####(1) For FewRel ``` cp -r data/ fewrel/ cp -r glove/ fewrel/ cd fewrel python run_multi_proto.py ``` ####(2) For SimpleQuestions ``` cp -r data/ simque/ cp -r glove/ simque/ cd simque python run_multi_proto.py ``` ####(3) For TACRED ``` cp -r data/ tacred/ cp -r glove/ tacred/ cd tacred python run_multi_proto.py ``` ####(4) For some special settings All the config files can be found in "./fewrel/config/", "./tacred/config/", and "./simque/config/". By changing the config file name in the code "run\_multi\_proto.py", we can run experiments with different settings. In "./fewrel/config/", "./tacred/config/", and "./simque/config/", we also provide code to generate customized settings.