# MOTDT **Repository Path**: tianlee/MOTDT ## Basic Information - **Project Name**: MOTDT - **Description**: Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## MOTDT ### Reference ``` @inproceedings{long2018tracking, title={Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification}, author={Long, Chen and Haizhou, Ai and Zijie, Zhuang and Chong, Shang}, year={2018}, booktitle={ICME} } ``` ### Usage Download MOT16 dataset and trained weights from the following links. Put weight files in `data`, then build and run the code. ```bash pip install -r requirements.txt sh make.sh python eval_mot.py ``` I used five of six training sequences as the validation set. Following are the details and evaluation results. Please note that the results may be a little different with the paper because this is a re-implementation version. ``` Sequences: 'MOT16-02' 'MOT16-05' 'MOT16-09' 'MOT16-11' 'MOT16-13' ... MOT16-02 Preprocessing (cleaning) MOT16-02... ...... Removing 656 boxes from solution... MOT16-02 IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 38.0 76.4 25.3| 30.6 92.5 0.73| 54 7 20 27| 441 12379 47 146| 27.8 75.1 28.1 ... MOT16-05 Preprocessing (cleaning) MOT16-05... ........ Removing 1 boxes from solution... MOT16-05 IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 52.0 80.8 38.3| 44.3 93.3 0.26| 125 12 68 45| 216 3801 35 130| 40.6 76.1 41.1 ... MOT16-09 Preprocessing (cleaning) MOT16-09... ..... Removing 765 boxes from solution... MOT16-09 IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 58.6 73.1 48.9| 63.2 94.5 0.37| 25 7 16 2| 195 1936 35 66| 58.8 75.2 59.4 ... MOT16-11 Preprocessing (cleaning) MOT16-11... ......... Removing 2 boxes from solution... MOT16-11 IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 54.3 71.6 43.7| 57.7 94.5 0.34| 69 11 29 29| 309 3884 29 74| 54.0 79.3 54.3 ... MOT16-13 Preprocessing (cleaning) MOT16-13... ....... Removing 0 boxes from solution... MOT16-13 IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 38.0 71.7 25.9| 29.5 81.8 1.01| 107 11 39 57| 754 8072 46 178| 22.5 72.6 22.9 ********************* Your MOT16 Results ********************* IDF1 IDP IDR| Rcll Prcn FAR| GT MT PT ML| FP FN IDs FM| MOTA MOTP MOTAL 45.7 74.4 33.0| 40.5 91.4 0.53| 380 48 172 160| 1915 30072 192 594| 36.3 75.9 36.7 ``` ### Evaluate You can use official [matlab eval devkit](https://bitbucket.org/amilan/motchallenge-devkit/) to evaluate the outputs. Or directly use the python version [motmetrics](https://github.com/cheind/py-motmetrics). I already added the python evaluation method in the `eval_mot.py` script. The results are slightly different from the official devkit since the ignoring method is not identical. Results from python evaluation: ``` IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM MOTA MOTP MOT16-02 37.1% 75.6% 24.6% 30.2% 93.0% 54 7 21 26 406 12440 47 146 27.7% 0.247 MOT16-05 53.7% 83.0% 39.7% 44.6% 93.1% 125 13 68 44 224 3779 35 130 40.8% 0.242 MOT16-09 61.1% 75.8% 51.1% 63.6% 94.3% 25 8 15 2 202 1913 28 64 59.2% 0.247 MOT16-11 54.9% 72.2% 44.3% 58.1% 94.7% 69 12 28 29 301 3840 27 70 54.6% 0.208 MOT16-13 38.2% 71.6% 26.0% 29.7% 81.6% 107 11 38 58 766 8051 46 178 22.6% 0.276 OVERALL 46.1% 75.1% 33.3% 40.6% 91.5% 380 51 170 159 1899 30023 183 588 36.5% 0.241 ``` ### Resources Paper: Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification ([researchgate](https://www.researchgate.net/publication/326224594_Real-time_Multiple_People_Tracking_with_Deeply_Learned_Candidate_Selection_and_Person_Re-identification), [arxiv](https://arxiv.org/abs/1809.04427)) Results on the test set: https://motchallenge.net/tracker/MOTDT Eval Devkit: https://bitbucket.org/amilan/motchallenge-devkit/ Models: https://drive.google.com/open?id=1ETfqSoy7OeT-8GO75F1bYWhP3mzrwwvn