# metid
**Repository Path**: tidymass/metid
## Basic Information
- **Project Name**: metid
- **Description**: metid repo
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-09-17
- **Last Updated**: 2024-05-30
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# metid
[](https://cran.r-project.org/package=metid)
[](https://github.com/tidymass/metid)
[](https://cran.r-project.org/package=metid)
[](https://www.tidyverse.org/lifecycle/#experimental)
`metid` is a part of [tidymass](https://tidymass.github.io/tidymass/)
-------
# About
`metid` is a R package which is used for metabolite identification based
on in-house database and public database based on accurate mass (m/z),
retention time (RT) and/or MS2 spectra.
# Installation
You can install `metid` from [GitLab](https://gitlab.com/tidymass/metid)
``` r
if(!require(remotes)){
install.packages("remotes")
}
remotes::install_gitlab("tidymass/metid")
```
or [Github](https://github.com/tidymass/metid)
``` r
remotes::install_github("tidymass/metid")
```
`metid` is a part of `tidymass`, so you can also install it by installing [`tidymass`](https://www.tidymass.org/).
# Usage
Please see the `Help documents` page to get the instruction of `metid`.
## Need help?
If you have any questions about `metid`, please don’t hesitate to email me ().
[shenzutao1990](https://www.shenxt.info/files/wechat_QR.jpg)
[Twitter](https://twitter.com/JasperShen1990)
[M339, Alway Buidling, Cooper Lane, Palo Alto, CA 94304](https://www.google.com/maps/place/Alway+Building/@37.4322345,-122.1770883,17z/data=!3m1!4b1!4m5!3m4!1s0x808fa4d335c3be37:0x9057931f3b312c29!8m2!3d37.4322345!4d-122.1748996)
# Citation
If you use `metid` in your publications, please cite this paper:
1. Xiaotao Shen, Si Wu, Liang Liang, Songjie Chen, Kevin Contrepois, Zheng-Jiang Zhu\*, Michael Snyder\* (Corresponding Author). metID: A R package for automatable compound annotation for LC−MS-based data. Bioinformatics, btab583, [https://doi.org/10.1093/bioinformatics/btab583](https://doi.org/10.1093/bioinformatics/btab583)
2. Shen, X., Yan, H., Wang, C. et al. TidyMass an object-oriented reproducible analysis framework for LC–MS data. Nat Commun 13, 4365 (2022). [Weblink](https://www.nature.com/articles/s41467-022-32155-w)
Thanks very much!