# RPEval **Repository Path**: tize/RPEval ## Basic Information - **Project Name**: RPEval - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-07 - **Last Updated**: 2025-07-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RPEval: Role-Playing Evaluation for Large Language Models
*This repository contains code and data referenced in: ["Role-Playing Evaluation for Large Language Models"](https://arxiv.org/abs/2505.13157).* Large Language Models (LLMs) demonstrate a notable capacity for adopting personas and engaging in role-playing. However, evaluating this ability presents significant challenges, as human assessments are resource-intensive and automated evaluations can be biased. To address this, we introduce Role-Playing Eval (RPEval), a novel benchmark designed to assess LLM role-playing capabilities across four key dimensions: emotional understanding, decision-making, moral alignment, and in-character consistency. ## Getting Started Clone the repository and install the dependencies: ```bash git clone https://github.com/yelboudouri/RPEval.git cd RPEval pip install -r requirements.txt ``` ## Reproducing Paper Results To reproduce the evaluation results from the paper: ```bash python eval.py --responses-file=data/responses_gpt_4o_2024_08_06.jsonl ``` To test other models, simply change the `--responses-file` argument to the appropriate file under the `data/` directory. ## Evaluating a New Model To run RPEval on a different model: ```bash python eval.py --provider="