# splatad **Repository Path**: tj1652045/splatad ## Basic Information - **Project Name**: splatad - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-24 - **Last Updated**: 2026-01-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

SplatAD

Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving

tyro logo
[Project page](https://research.zenseact.com/publications/splatad/)
# About This is the official repository for the CVPR 2025 paper [_SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving_](https://arxiv.org/abs/2411.16816). The code in this repository builds upon the open-source library [gsplat](https://github.com/nerfstudio-project/gsplat), with modifications and extensions designed for autonomous driving data. While the code contians all components needed to efficiently render camera and lidar data, the SplatAD-model itself, including dataloading, decoders, etc., will be released through [neurad-studio](https://github.com/georghess/neurad-studio). **We welcome all contributions!** # Key Features - Efficient lidar rendering - Projection to spherical coordinates - Depth and feature rasterization for a non-linear grid of points - Rolling shutter compensation for camera and lidar # Installation Our code introduce no additional dependencies. We thus refer to the original documentation from gsplat for both [installation](https://github.com/nerfstudio-project/gsplat#installation) and [development setup](https://github.com/nerfstudio-project/gsplat/blob/main/docs/DEV.md). # Usage See [`rasterization`](gsplat/rendering.py#L22) and [`lidar_rasterization`]((gsplat/rendering.py#L443)) for entry points to camera and lidar rasterization. Additionally, we provide example notebooks under [examples](examples) that demonstrate lidar rendering and rolling shutter compensation. For further examples, check out the [test files](tests). # Built On - [gsplat](https://github.com/nerfstudio-project/gsplat) - Collaboration friendly library for CUDA accelerated rasterization of Gaussians with python bindings - [3dgs-deblur](https://github.com/SpectacularAI/3dgs-deblur) - Inspiration for the rolling shutter compensation # Citation You can find our paper on [arXiv](https://arxiv.org/abs/2411.16816). If you use this code or find our paper useful, please consider citing: ```bibtex @article{hess2024splatad, title={SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving}, author={Hess, Georg and Lindstr{\"o}m, Carl and Fatemi, Maryam and Petersson, Christoffer and Svensson, Lennart}, journal={arXiv preprint arXiv:2411.16816}, year={2024} } ``` # Contributors \+ [gsplat contributors](https://github.com/nerfstudio-project/gsplat/graphs/contributors)