# PKINet **Repository Path**: tjc4814/PKINet ## Basic Information - **Project Name**: PKINet - **Description**: https://arxiv.org/pdf/2403.06258.pdf - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-18 - **Last Updated**: 2024-08-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Poly Kernel Inception Network for Remote Sensing Detection ## Introduction This repository is the official implementation of CVPR2024 Paper "[Poly Kernel Inception Network for Remote Sensing Detection](https://openaccess.thecvf.com/content/CVPR2024/papers/Cai_Poly_Kernel_Inception_Network_for_Remote_Sensing_Detection_CVPR_2024_paper.pdf)". ## Results and models ### Pretrained models Imagenet 300-epoch pretrained PKINet-T backbone: [Download](https://1drv.ms/u/c/9ce9a57f1a400a74/EXQKQBp_pekggJxvAAAAAAABWyCuNnKnuiA47qX6Wr7TMQ?e=pWhU1h) Imagenet 300-epoch pretrained PKINet-S backbone: [Download](https://1drv.ms/u/c/9ce9a57f1a400a74/EXQKQBp_pekggJxrAAAAAAAB46whGHAZkAw-Pnkwgc_OWQ?e=n0NrZl) ### Experiments results DOTAv1.0 | Model | mAP | Angle | Aug | Configs | Download | |:------------------------:|:-----:|:-----:| :-: |:------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| | PKINet-T (1024,1024,200) | 77.87 | le90 | - | [pkinet-t_fpn_o-rcnn_dotav1-ss_le90](./configs/pkinet/pkinet-t_fpn_o-rcnn-dotav1-ss_le90.py) | [model](https://1drv.ms/u/c/9ce9a57f1a400a74/EXQKQBp_pekggJxuAAAAAAABKAmGDsIXgkjY5_WjNzQorQ?e=Lcibnd) | | PKINet-S (1024,1024,200) | 78.39 | le90 | - | [pkinet-s_fpn_o-rcnn_dotav1-ss_le90](./configs/pkinet/pkinet-s_fpn_o-rcnn-dotav1-ss_le90.py) | [model](https://1drv.ms/u/c/9ce9a57f1a400a74/EXQKQBp_pekggJxsAAAAAAABWxHIx4vrnkZsRy1JW3BRaw?e=e07o7V)| DOTAv1.5 | Model | mAP | Angle | Aug | Configs | Download | |:------------------------:|:-----:|:-----:| :-: |:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------:| | PKINet-S (1024,1024,200) | 71.47 | le90 | - |[pkinet-s_fpn_o-rcnn_dotav15-ss_le90](./configs/pkinet/pkinet-s_fpn_o-rcnn-dotav15-ss_le90.py) |[model](https://1drv.ms/u/c/9ce9a57f1a400a74/EXQKQBp_pekggJxtAAAAAAABYD69GUAHCtBp4RRSoKLuYQ?e=xh6iwO) | ## Installation MMRotate-PKINet depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv) and [MMDetection](https://github.com/open-mmlab/mmdetection). Below are quick steps for installation. Please refer to [Install Guide](https://mmrotate.readthedocs.io/en/latest/install.html) for more detailed instruction. ```shell conda create --name openmmlab python=3.8 -y conda activate openmmlab conda install pytorch==1.11.0 torchvision==0.12.0 cudatoolkit=11.3 -c pytorch pip install yapf==0.40.1 pip install -U openmim mim install mmcv-full mim install mmdet mim install mmengine git clone cd PKINet mim install -v -e . ``` ## Get Started Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMRotate. We provide [colab tutorial](demo/MMRotate_Tutorial.ipynb), and other tutorials for: - [learn the basics](docs/en/intro.md) - [learn the config](docs/en/tutorials/customize_config.md) - [customize dataset](docs/en/tutorials/customize_dataset.md) - [customize model](docs/en/tutorials/customize_models.md) - [useful tools](docs/en/tutorials/useful_tools.md) ## License This project is released under the [Apache 2.0 license](LICENSE). ## Citation ``` @InProceedings{Cai_2024_Poly, author = {Cai, Xinhao and Lai, Qiuxia and Wang, Yuwei and Wang, Wenguan and Sun, Zeren and Yao, Yazhou}, title = {Poly Kernel Inception Network for Remote Sensing Detection}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, pages = {27706-27716} } ```