# CEN **Repository Path**: tju_hfut_sym/CEN ## Basic Information - **Project Name**: CEN - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-08-18 - **Last Updated**: 2024-10-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Multimodal Fusion by Channel Exchanging By Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, Junzhou Huang. [**[Paper]**](https://papers.nips.cc/paper/2020/file/339a18def9898dd60a634b2ad8fbbd58-Paper.pdf) [**[Paper & Appendix]** (with proofs and visualizations)](https://arxiv.org/pdf/2011.05005.pdf) [[Slides]](https://yikaiw.github.io/projects/NeurIPS20-CEN/slides.pdf) [[Poster]](https://yikaiw.github.io/projects/NeurIPS20-CEN/poster.pdf) [[BibTex]](https://yikaiw.github.io/projects/NeurIPS20-CEN/cite.txt) This repository is an official PyTorch implementation of "Deep Multimodal Fusion by Channel Exchanging", in NeurIPS 2020. The basic method and applications are introduced as belows:

If you find our work useful for your research, please consider citing the following paper. ``` @inproceedings{wang2020cen, title={Deep Multimodal Fusion by Channel Exchanging}, author={Wang, Yikai and Huang, Wenbing and Sun, Fuchun and Xu, Tingyang and Rong, Yu and Huang, Junzhou}, booktitle={Advances in Neural Information Processing Systems (NeurIPS)}, year={2020} } ``` ## Datasets For semantic segmentation task on NYUDv2 ([official dataset](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html)), we provide a link to download the dataset [here](https://drive.google.com/drive/folders/1mXmOXVsd5l9-gYHk92Wpn6AcKAbE0m3X?usp=sharing). The provided dataset is originally preprocessed in this [repository](https://github.com/DrSleep/light-weight-refinenet), and we add depth data in it. For image-to-image translation task, we use the sample dataset of [Taskonomy](http://taskonomy.stanford.edu/), where a link to download the sample dataset is [here](https://github.com/alexsax/taskonomy-sample-model-1.git). Please modify the data paths in the codes, where we add comments 'Modify data path'. ## Dependencies ``` python==3.6.2 pytorch==1.0.0 torchvision==0.2.2 imageio==2.4.1 numpy==1.16.2 scikit-learn==0.20.2 scipy==1.1.0 opencv-python==4.0.0 ``` ## Semantic Segmentation First, ``` cd semantic_segmentation ``` Training script for segmentation with RGB and Depth input, the default setting uses RefineNet (ResNet101), ``` python main.py --gpu 0 -c exp_name # or --gpu 0 1 2 ``` Evaluation script, ``` python main.py --gpu 0 --resume path_to_pth --evaluate # optionally use --save-img to visualize results ``` Checkpoint models, training logs and the **single-scale** performance on NYUDv2 (with RefineNet) are provided as follows: | Backbone | Pixel Acc. (%) | Mean Acc. (%) | Mean IoU (%) | Download | |:-----------:|:-----------:|:-----------:|:-----------:|:-----------:| | ResNet101 | 76.2 | 62.8 | 51.1 | [Google Drive](https://drive.google.com/drive/folders/1wim_cBG-HW0bdipwA1UbnGeDwjldPIwV?usp=sharing)| | ResNet152 | 77.0 | 64.4 | 51.6 | [Google Drive](https://drive.google.com/drive/folders/1DGF6vHLDgBgLrdUNJOLYdoXCuEKbIuRs?usp=sharing)| ## Image-to-Image Translation First, ``` cd image2image_translation ``` Training script, an example of translation from Shade (2) and Texture (7) to RGB (0) (could reach 62~63 FID score), ``` python main.py --gpu 0 --img-types 2 7 0 -c exp_name ``` This script will auto-evaluate on the validation dataset every 5 training epochs. Predicted images will be automatically saved during training, in the following folder structure: ``` code_root/ckpt/exp_name/results ├── input0 # 1st modality input ├── input1 # 2nd modality input ├── fake0 # 1st branch output ├── fake1 # 2nd branch output ├── fake2 # ensemble output ├── best # current best output │ ├── fake0 │ ├── fake1 │ └── fake2 └── real # ground truth output ``` For training with other modalities, the index for each img-type is described as belows, and also in Line 69 of ```main.py```. ``` 0: 'rgb', 1: 'normal', 2: 'reshading', 3: 'depth_euclidean', 4: 'depth_zbuffer', 5: 'principal_curvature', 6: 'edge_occlusion', 7: 'edge_texture', 8: 'segment_unsup2d', 9: 'segment_unsup25d' ``` Full quantitative results are provided in the paper. ## License CEN is released under MIT License.