# SeAFusion **Repository Path**: tju_hfut_sym/SeAFusion ## Basic Information - **Project Name**: SeAFusion - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-02-09 - **Last Updated**: 2022-03-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SeAFusion The code of "Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network" The paper is now freely available for download through the following links: [https://authors.elsevier.com/c/1eMto5a7-Gls0k](https://authors.elsevier.com/c/1eMto5a7-Gls0k). ## To Train Run ```**CUDA_VISIBLE_DEVICES=0 python train.py**``` to train your model. The training data are selected from the MFNet dataset. For convenient training, users can download the training dataset from [here](https://pan.baidu.com/s/1xueuKYvYp7uPObzvywdgyA), in which the extraction code is: **bvfl**. The MFNet dataset can be downloaded via the following link: [https://drive.google.com/drive/folders/18BQFWRfhXzSuMloUmtiBRFrr6NSrf8Fw](https://drive.google.com/drive/folders/18BQFWRfhXzSuMloUmtiBRFrr6NSrf8Fw). The MFNet project address is: [https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/](https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/). ## To Test Run ```**CUDA_VISIBLE_DEVICES=0 python test.py**``` to test the model. ## For quantitative evaluation For quantitative assessments, please follow the instruction to modify and run **. /Evaluation/test_evaluation.m** . ## Recommended Environment - [ ] torch 1.7.1 - [ ] torchvision 0.8.2 - [ ] numpy 1.19.2 - [ ] pillow 8.0.1 ## If this work is helpful to you, please cite it as: ``` @article{TANG202228SeAFusion, title = {Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network}, journal = {Information Fusion}, volume = {82}, pages = {28-42}, year = {2022}, issn = {1566-2535} } ```