# pose-residual-network **Repository Path**: todosthing/pose-residual-network ## Basic Information - **Project Name**: pose-residual-network - **Description**: Code for the Pose Residual Network introduced in 'MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network (ECCV 2018)' paper - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-05 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Pose Residual Network This repository contains a Keras implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed Kocabas, Salih Karagoz, Emre Akbas. MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network. In ECCV, 2018. [Arxiv](https://arxiv.org/abs/1807.04067) PRN is described in Section 3.2 of the paper. ## Getting Started We have tested our method on [COCO Dataset](http://cocodataset.org) ### Prerequisites ``` python tensorflow keras numpy tqdm pycocotools progress scikit-image ``` ### Installing 1. Clone this repository: `git clone https://github.com/mkocabas/pose-residual-network.git` 2. Install [Tensorflow](https://www.tensorflow.org/install/). 3. ```pip install -r src/requirements.txt``` 4. To download COCO dataset train2017 and val2017 annotations run: `bash data/coco.sh`. (data size: ~240Mb) ## Training `python main.py` For more options take a look at `opt.py` ## Results Results on COCO val2017 Ground Truth data. ``` Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.894 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.971 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.912 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.875 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.918 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.909 Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.972 Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.928 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.896 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.947 ``` ## License ## Other Implementations [Pytorch Version](https://github.com/salihkaragoz/pose-residual-network-pytorch) ## Citation If you find this code useful for your research, please consider citing our paper: ``` @Inproceedings{kocabas18prn, Title = {Multi{P}ose{N}et: Fast Multi-Person Pose Estimation using Pose Residual Network}, Author = {Kocabas, Muhammed and Karagoz, Salih and Akbas, Emre}, Booktitle = {European Conference on Computer Vision (ECCV)}, Year = {2018} } ```