# binary-image-selection **Repository Path**: tom_zhj/binary-image-selection ## Basic Information - **Project Name**: binary-image-selection - **Description**: BISON: Binary Image SelectiON - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-14 - **Last Updated**: 2024-11-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [Binary Image SelectiON (BISON)](https://hexiang-hu.github.io/bison) This repository implements an evaluation script for measuring the mean BISON accuracy on the val2014 split of the COCO-caption dataset. If you use BISON to analyze your image-captioning system, please cite: - Hexiang Hu, Ishan Misra, and Laurens van der Maaten. **Binary Image Selection (BISON): Interpretable Evaluation of Visual Grounding.** _arXiv:1901.06595, 2019. ## Requirements - Python 3+ - Numpy 1.10.0+ ## Usage Please put your prediction file (format as shown in later section) in the folder **predictions/**, and specify the current annotation filepath, as well as the prediction filepath. The usage is listed as following: ```bash python bison_eval.py [-h] [--anno_path ANNO_PATH] [--pred_path PRED_PATH] optional arguments: -h, --help show this help message and exit --anno_path ANNO_PATH Path to the annotation file --pred_path PRED_PATH Path to the prediction file ``` ## File format for predictions The model predictions used as input into the BISON evaluation script should be in the following file format: ```javascript [ { "bison_id": 0, "predicted_image_id": 50965, }, ... ] ``` ## References - [Binary Image Selection (BISON): Interpretable Evaluation of Visual Grounding](https://hexiang-hu.github.io/bison) - [COCO captions](https://github.com/tylin/coco-caption) ## License BISON is CC-BY-NC 4.0 licensed, as found in the LICENSE file.