# ML-DL-scripts **Repository Path**: tslmy_admin/ML-DL-scripts ## Basic Information - **Project Name**: ML-DL-scripts - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) # Machine Learning and Deep learning scripts The repository provides usefull python scripts for ML and DL * [Classifications](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING) - kaggle solutions, MOOC exercises, etc * [Regression](https://github.com/Diyago/ML-DL-scripts/tree/master/regression) - kaggle solutions, MOOC exercises, etc * [Statistics](https://github.com/Diyago/ML-DL-scripts/tree/master/statistics) - essential tools to compare medians, means, data disturbution for statistical signifance * [Clustering tasks](https://github.com/Diyago/ML-DL-scripts/tree/master/clustering) - useful cases for clustering tasks * [Time series tasks](https://github.com/Diyago/ML-DL-scripts/tree/master/time%20series%20regression) a. [Anomaly detection](https://github.com/Diyago/ML-DL-scripts/tree/96825d152203ade61306f4afeeffcd31fc11b01c/time%20series%20regression/anomaly%20detection). [Medium article](https://medium.com/p/4c661f6f165f/) ![Anomaly detection](./images/anomaly-detection.png) b. [DL aproach for timeseries](https://github.com/Diyago/ML-DL-scripts/tree/96825d152203ade61306f4afeeffcd31fc11b01c/time%20series%20regression/DL%20aproach%20for%20timeseries) c. [ARIMA](https://github.com/Diyago/ML-DL-scripts/tree/96825d152203ade61306f4afeeffcd31fc11b01c/time%20series%20regression/ARIMA) * [Deep learning (pytorch, fastai, keras)](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING) * [NLP](https://github.com/Diyago/ML-DL-scripts/tree/master/NLP) * Images * [Autoencoders, GANS](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/Autoencoders%20GANS) a. [Tabular GANs](https://github.com/Diyago/ML-DL-scripts/tree/96825d152203ade61306f4afeeffcd31fc11b01c/DEEP%20LEARNING/Autoencoders%20GANS/GAN-for-tabular-data) b. [Style transfer](https://github.com/Diyago/ML-DL-scripts/tree/96825d152203ade61306f4afeeffcd31fc11b01c/DEEP%20LEARNING/Autoencoders%20GANS/Style%20transfer) * [Image Classification:](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/image%20classification) a. [Fastai](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/image%20classification/fastai) b. [Keras](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/image%20classification/keras) c. [Pytorch](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/image%20classification) ![Anomaly detection](./images/img_class.png) * [Object detection](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/Object%20detection) ![Object detecyion](./images/object_detections.jpg) * [Pytorch tutorials](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/Pytorch%20from%20scratch) * [Segmentations tasks](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/segmentation) a. Kaggle solutions b. [Segmentation pipeline](https://github.com/Diyago/ML-DL-scripts/tree/master/DEEP%20LEARNING/segmentation/Segmentation%20pipeline). [Medium article](https://towardsdatascience.com/road-detection-using-segmentation-models-and-albumentations-libraries-on-keras-d5434eaf73a8) ![Road Detection](./images/road-detection) * [Deployment](https://github.com/Diyago/ML-DL-scripts/tree/master/deployment) (docker)