# imgaug **Repository Path**: tutu96177/imgaug ## Basic Information - **Project Name**: imgaug - **Description**: Image augmentation for machine learning experiments. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much larger set of slightly altered images. [](https://travis-ci.org/aleju/imgaug) [](https://codecov.io/gh/aleju/imgaug) [](https://www.codacy.com/app/aleju/imgaug?utm_source=github.com&utm_medium=referral&utm_content=aleju/imgaug&utm_campaign=Badge_Grade)
| Image | Heatmaps | Seg. Maps | Keypoints | Bounding Boxes, Polygons |
|
|---|---|---|---|---|---|
| Original Input | ![]() |
![]() |
![]() |
![]() |
![]() |
| Gauss. Noise + Contrast + Sharpen |
![]() |
![]() |
![]() |
![]() |
![]() |
| Affine | ![]() |
![]() |
![]() |
![]() |
![]() |
| Crop + Pad |
![]() |
![]() |
![]() |
![]() |
![]() |
| Fliplr + Perspective |
![]() |
![]() |
![]() |
![]() |
![]() |
| meta | ||||
| Noop | ChannelShuffle | |||
![]() |
![]() |
|||
| arithmetic | ||||
| Add | Add (per_channel=True) |
AdditiveGaussianNoise | AdditiveGaussianNoise (per_channel=True) |
AdditiveLaplaceNoise |
![]() |
![]() |
![]() |
![]() |
![]() |
| AdditiveLaplaceNoise (per_channel=True) |
AdditivePoissonNoise | AdditivePoissonNoise (per_channel=True) |
Multiply | Multiply (per_channel=True) |
![]() |
![]() |
![]() |
![]() |
![]() |
| Dropout | Dropout (per_channel=True) |
CoarseDropout (p=0.2) |
CoarseDropout (p=0.2, per_channel=True) |
ImpulseNoise |
![]() |
![]() |
![]() |
![]() |
![]() |
| SaltAndPepper | Salt | Pepper | CoarseSaltAndPepper (p=0.2) |
CoarseSalt (p=0.2) |
![]() |
![]() |
![]() |
![]() |
![]() |
| CoarsePepper (p=0.2) |
Invert | Invert (per_channel=True) |
JpegCompression | |
![]() |
![]() |
![]() |
![]() |
|
| blend | ||||
| Alpha with EdgeDetect(1.0) |
Alpha with EdgeDetect(1.0) (per_channel=True) |
SimplexNoiseAlpha with EdgeDetect(1.0) |
FrequencyNoiseAlpha with EdgeDetect(1.0) |
|
![]() |
![]() |
![]() |
![]() |
|
| blur | ||||
| GaussianBlur | AverageBlur | MedianBlur | BilateralBlur (sigma_color=250, sigma_space=250) |
MotionBlur (angle=0) |
![]() |
![]() |
![]() |
![]() |
![]() |
| MotionBlur (k=5) |
||||
![]() |
||||
| color | ||||
| MultiplyHueAndSaturation | MultiplyHue | MultiplySaturation | AddToHueAndSaturation | AddToHue |
![]() |
![]() |
![]() |
![]() |
![]() |
| AddToSaturation | Grayscale | KMeansColorQuantization (to_colorspace=RGB) |
UniformColorQuantization (to_colorspace=RGB) |
|
![]() |
![]() |
![]() |
![]() |
|
| contrast | ||||
| GammaContrast | GammaContrast (per_channel=True) |
SigmoidContrast (cutoff=0.5) |
SigmoidContrast (gain=10) |
SigmoidContrast (per_channel=True) |
![]() |
![]() |
![]() |
![]() |
![]() |
| LogContrast | LogContrast (per_channel=True) |
LinearContrast | LinearContrast (per_channel=True) |
AllChannels- HistogramEqualization |
![]() |
![]() |
![]() |
![]() |
![]() |
| HistogramEqualization | AllChannelsCLAHE | AllChannelsCLAHE (per_channel=True) |
CLAHE | |
![]() |
![]() |
![]() |
![]() |
|
| convolutional | ||||
| Sharpen (alpha=1) |
Emboss (alpha=1) |
EdgeDetect | DirectedEdgeDetect (alpha=1) |
|
![]() |
![]() |
![]() |
![]() |
|
| edges | ||||
| Canny | ||||
![]() |
||||
| flip | ||||
| Fliplr | Flipud | |||
![]() |
![]() |
|||
| geometric | ||||
| Affine | Affine: Modes | |||
![]() |
![]() |
|||
| Affine: cval | PiecewiseAffine | |||
![]() |
![]() |
|||
| PerspectiveTransform | ElasticTransformation (sigma=0.2) |
|||
![]() |
![]() |
|||
| ElasticTransformation (sigma=5.0) |
Rot90 | |||
![]() |
![]() |
|||
| pooling | ||||
| AveragePooling | MaxPooling | MinPooling | MedianPooling | |
![]() |
![]() |
![]() |
![]() |
|
| segmentation | ||||
| Superpixels (p_replace=1) |
Superpixels (n_segments=100) |
UniformVoronoi | RegularGridVoronoi: rows/cols (p_drop_points=0) |
RegularGridVoronoi: p_drop_points (n_rows=n_cols=30) |
![]() |
![]() |
![]() |
||
| RegularGridVoronoi: p_replace (n_rows=n_cols=16) |
||||
![]() |
||||
| size | ||||
| CropAndPad | Crop | |||
![]() |
![]() |
|||
| Pad | PadToFixedSize (height'=height+32, width'=width+32) |
|||
![]() |
![]() |
|||
| CropToFixedSize (height'=height-32, width'=width-32) |
||||
![]() |
||||
| weather | ||||
| FastSnowyLandscape (lightness_multiplier=2.0) |
Clouds | Fog | Snowflakes | |
![]() |
![]() |
![]() |
![]() |
|